This paper studies the isotopic effect of Cl2^+ rovibronic spectra in the A^2Лu (Ω = 1/2)-X^2Лg (Ω = 1/2) system. Based on the experimental results of the molecular constants of ^35Cl2^+, it calculates the vibrational isotope shifts of the (2, 7) and (3, 7) band between the isotopic species ^35C12^+, ^35Cl^37Cl + and ^37Cl2^+, and estimates the rotational constants of both A^2Лu and X^2Лg states for the minor isotopic species ^35Cl^37Cl+ and ^37Cl2^+. The experimental results of the spectrum of 35Cl37Cl-1- (3, 7) band proves the above mentioned theoretical calculation. The molecular constants and thus resultant rovibronic spectrum for ^37Cl2^+ were predicted, which will be helpful for further experimental investigation.
The general expressions of the average dissipative and dipole forces acting on a A-configuration three-level atom in an arbitrary light field are derived by means of the optical Bloch equations based on the atomic density matrix elements, and the general properties of the average dissipative and dipole forces on a three-level atom in the linearly-polarized high-order Bessel beams (HBBs) are analysed. We find a resonant property (with two resonant peaks) of the dissipative force and a non-resonant property (with two pairs of non-resonant peaks) of the dipole force on the three-level atom, which are completely different from those on the two-level atom. Meanwhile we find a saturation effect of the average dissipative force in the HBB, which comes from the saturation of the upper-level population. Our study shows that the general expressions of the average dissipative and dipole forces on the three-level atom will be simplified to those of the two-level atom under the approximation of large detuning. Finally, we study the axial and azimuthal Doppler cooling of atoms in ID optical molasses composed of two counter-propagating HBBs and discuss the azimuthal influence of the HBB on the Doppler cooling limit. We also find that the Doppler limit of atoms in the molasses HBB is slightly below the conventional Doppler limit of hГ/(2kB) due to the orbital angular momentum lh of the HBB.
This paper proposes a scheme of axial triple-well optical dipole trap by employing a simple optical system composed of a circular cosine grating and a lens. Three optical wells separated averagely by -37 μm were created when illuminating by a YAG laser with power 1 mW. These wells with average trapping depth -0.5 μK and volume -74 μm^3 are suitable to trap and manipulate an atomic Bose-Einstein condensation (BEC). Due to a controllable grating implemented by a spatial light modulator, an evolution between a triple-well trap and a single-well one is achievable by adjusting the height of potential barrier between adjacent wells. Based on this novel triple-well potentials, the loading and splitting of BEC, as well as the interference between three freely expanding BECs, are also numerically stimulated within the framework of mean-field treatment. By fitting three cosine functions with three Gaussian envelopes to interference fringe, the information of relative phases among three condensates is extracted.
This paper proposes a flexible scheme to form various optical multi-well traps for cold atoms or molecules by using a simple optical system composed of an compounded amplitude cosine-only grating and a single lens illuminated by a plane light wave or a Gaussian beam. Dynamic manipulation and evolution of multi-well trap can be easily implemented by controlling the modulation frequency of the cosine patterns. It also discusses how to expand this multi-well trap to two-dimensional lattices with single- or multi-well trap by using an orthogonally or non-orthogonally modulated grating, as well as using incoherent multi-beam illumination, and these results show that all the symmetric structures of two-dimensional Bravais lattices can be obtained facilely by using proposed scheme.