The tool point frequency response function(FRF) is commonly obtained by impacting test or semi-analytical techniques.Regardless of the approach,it is assumed that the workpiece system is rigid.The assumption is valid in common machining,but it doesn’t work well in the cutting processes of thin-wall products.In order to solve the problem,a multi-degree-of-freedom dynamic model is employed to obtain the relative dynamic stiffness between the cutting tool and the workpiece system.The relative direct and cross FRFs between the cutting tool and workpiece system are achieved by relative excitation experiment,and compared with the tool point FRFs at x and y axial direction.The comparison results indicate that the relative excitation method could be used to obtain the relative dynamic compliance of machine-tool-workpiece system more actually and precisely.Based on the more precise relative FRFs,four evaluation criterions of dynamic stiffness are proposed,and the variation trend curves of these criterions during the last six months are achieved and analyzed.The analysis results show that the lowest natural frequency,the maximum and the average dynamic compliances at x axial direction deteriorate more quickly than that at y axial direction.Therefore,the main cutting direction and the large-size direction of workpieces should be arranged at y axial direction to slow down the deterioration of the dynamic stiffness of machining centers.The compliance of workpiece system is considered,which can help master the deterioration rules of the dynamic stiffness of machining centers,and enhance the reliability of machine centers and the consistency of machining processes.
在机床各种形式的振动中,再生颤振具有最小的稳定极限切削宽度,换言之,机床抵抗再生颤振的能力最差。品质系数(Coefficient of Merit,COM)是切削力和切削表面法向相对位移之间的交叉频响函数最小负实部的函数,其大小直接反映机床抵抗再生颤振的能力。此外,在机床的连续使用过程中,品质系数COM会逐渐减小,进而影响机床再生颤振抗振能力。基于相对激振方法和四自由度立铣加工过程动力学模型,重点分析了机床相对动柔度劣化过程中品质系数COM的变化趋势,以及对加工过程稳定性Lobe图的影响。研究表明:随着机床相对动柔度的劣化,轴向极限切深ap逐渐减小,并有加速递减的趋势,这和机床品质系数的劣化趋势一致。因此,考虑机床相对动柔度对稳定性Lobe图的影响,才能确定更合适的工艺参数,保证切削过程的稳定性,提高加工效率。