To increase the low-field magnetostriction of TbFe films, the influences of sputtering angles and annealing temperatures on its magnetic and magnetostrictive performances were systematically investigated. With the change in sputtering angles from 90° to 15°, the in-plane magnetization of TbFe films, at 1600 kA·m-1 external field, is strongly increased. An enhancement in the in-plane magnetostrictive coefficient of the films at 40 kA·m-1 is also observed. A detection of magnetic domains by MFM (magnetic force microscopy) indicates that the easy magnetization direction shifts gradually from perpendicular to parallel to the film plane with decreasing sputtering angles. Annealing can enhance the magnetization and magnetostriction of the TbFe films. However, at too high annealing temperature, both the magnetization and magnetostriction of the TbFe films were suppressed to some extent.
Hongchuan JIANG, Wanli ZHANG, Wenxu ZHANG, Shiqing YANG and Huaiwu ZHANG College of Microelectronics and Solid State Electronics, University of Electronic Science and Technology of China, Chengdu 610054, China