With daily precipitation records at 586 stations in China for 1960-2004, this study investigates the spatio-temporal variation of the number of extreme wet days (NEWD) for each season in China and its relationship with SST anomalies and associated atmospheric circulation anomaly patterns, in which a threshold of extreme precipitation for a season and a station is defined as the value of the 90th percentile when the precipitation records for wet days during the season are ranked in an increasing order. Results show that there are significant increases of the NEWD along the Yangtze River valley during winter and summer, in North China during winter, in South China during spring, in Northeast China during winter and spring, and in Northwest China throughout the seasons, while there is a remarkable decrease in North China during summer. Besides the linear trend, the NEWD also exhibits considerable interannual and interdecadal variabilities. After eliminating the linear trend, the NEWD anomalies show distinct seasonal patterns. The NEWD anomalies are characterized by a "dipole" mode with opposite phases between northern and southern China in spring and autumn, a "tri-pole" mode with opposite phases between Yangtze River valley and southern and northern China in summer, and a "monopole" mode with the same phase over most of China in winter. The relationship of the NEWD anomalies in China with the SST anomalies in Indian and Pacific Oceans is found to be mainly dependent on the ENSO, and associated atmospheric circulation anomaly patterns for the ENSO's impact on the NEWD in China are identified.
Using ERA-40 reanalysis daily data for the period 1958-2002, this study investigated the effect of tran- sient eddy (TE) on the interannual meridional displacement of summer East Asian subtropical jet (EASJ) by conducting a detailed dynamical diagnosis. The summer EASJ axis features a significant interannual coherent meridional displacement. Associated with such a meridional displacement, the TE vorticity forcing anomalies are characterized by a meridional dipole pattern asymmetric about the climatological EASJ axis. The TE vorticity forcing anomalies yield barotropic zonal wind tendencies with a phase meridionally lead- ing the zonal wind anomalies, suggesting that they act to reinforce further meridional displacement of the EASJ and favor a positive feedback in the TE and time-mean flow interaction. However, The TE thermal forcing anomalies induce baroclinic zonal wind tendencies that reduce the vertical shear of zonal wind and atmospheric baroclinicity and eventually suppress the TE activity, favoring a negative feedback in the TE and time-mean flow interaction. Although the two types of TE forcing tend to have opposite feedback roles, the TE vorticity forcing appears to be dominant in the TE effect on the time-mean flow.