A dynamical-statistical post-processing approach is applied to seasonal precipitation forecasts in China during the summer.The data are ensemble-mean seasonal forecasts in summer (June August) from four atmospheric general circulation models (GCMs) in the second phase of the Canadian Historical Forecasting Project (HFP2) from 1969 to 2001.This dynamical-statistical approach is designed based on the relationship between the 500 geopotential height (Z500) forecast and the observed sea surface temperature (SST) to calibrate the precipitation forecasts.The results show that the post-processing can improve summer precipitation forecasts for many areas in China.Further examination shows that this post-processing approach is very effective in reducing the model-dependent part of the errors,which are associated with GCMs.The possible mechanisms behind the forecast's improvements are investigated.
Fifty-eight extratropical transition(ET) cases in the years 2000-2008, including 2,021 observations(at 6-hour intervals), over the western North Pacific are analyzed using the cyclone phase space(CPS) method, in an effort to get the characteristics of the structure evolution and environmental conditions of tropical cyclones(TCs) during ET over this area. Cluster analysis of the CPS dataset shows that strong TCs are more likely to undergo ET. ET begins with the increment of thermal asymmetry in TCs, along with the generation and intensification of an upper-level cold core, and ends with the occurrence of a lower-level cold core. ET lasts an average duration of about 28 hours. Dynamic composite analysis of the environmental field of different clusters shows that, in general, when TCs move northward,they are gradually embedded in the westerlies and gradually transform into extratropical cyclones under the influence of the mid-and higher-latitude baroclinic systems. As for those TCs which complete ET, there is always much greater potential vorticity gradient in the northwest of them and obvious water vapor transport channels in the environment.
The asymmetric distribution of convection associated with tropical cyclones making landfall on the east China coast is studied with black-body temperature (TBB) data from Fengyun-2 (FY-2) geostationary weather satellite. The convection in various quadrants of the TCs is examined for the period of -24 to 6 h relative to landfall. The convection to the southern side of the TCs was much more intense than that to the northern side during the whole landfall period. The convection to the western side of the TCs was stronger than that to the eastern side for the time -8 h before and at the landfall. After landfall, the situation reverses. The asymmetric convection of the TCs was partly due to the vertical wind shear and storm motion, and partly because the process of landfall restrained the convection in relevant quadrants. Besides, the orographic uplift along the east of China was favorable to the enhancement of convection in the eastern side of the TCs. From the characteristics of convective asymmetry of the TCs landing on the south and east of China, it is known that their main difference might be the included angle between the TC path and the coastline as well as the terrain along the coast.