This paper investigates an advanced grating-transferring technique combined with geometric phase analysis (GPA) for residual strain evaluation of curved surface.A standard holographic grating is first transferred to a pre-produced epoxy resin film and then consolidated to a test region of curved surface.With a rubber mold and silicone rubber the deformed grating is replicated to a sheet metal after hole-drilling for release of residual stress.After that the grating is transferred from the sheet metal to the glass plate,which would be served as an analyzer grating (specimen grating).By GPA the local strain distributions related to the phase difference between the reference grating and analyzer grating for the released stress can be evaluated.A validation test has been conducted on the weld joint of a stainless steel tube and the obtained results demonstrate the ability of the method in measuring the residual strain of curved surface.
Zhanwei Liu,1,Jiangfan Zhou,1 Xianfu Huang,1 Jian Lu,2 and Huimin Xie 3,1) Department of Mechanics,School of Astronautics,Beijing Institute of Technology,Beijing 100081,China 2) Department of Mechanical Engineering,The Hong Kong Polytechnic University,Hong Kong,China 3) AML,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China
The shear modulus of the adhesive layer and the failure mode of adhesive structure on single lap joint specimens under tensile tests are investigated in this paper.The aluminum-aluminum adherends are bonded by two different adhesives:polydimethylsiloxane (PDMS) and epoxy.The full deformation fields are measured using the digital image correlation (DIC) method with the images on the middle part of the adhesive layer recorded by a high resolution microscope.Then,the shear modulus values of the two adhesives are calculated with a simple pure shear strain model.A numerical model is proposed to simulate the single lap joint structure under tensile load in comparison with the experimental results.The results show that this method can successfully estimate the shear modulus of the adhesive layer.The failure behavior of epoxy adhesive/adherend interface is also analyzed and discussed.
This paper explores the planar arrangement feature of the copper interconnects in a view field of several millimeters by the focused ion-beam (FIB) Moire inversion method quantitatively. The curved FIB Moire patterns indicate that the copper interconnects are a series of curves with continuous variations instead of beelines. The control equation set of the copper interconnects central lines is attained through the Moire inversion method. This work can be extended to inspect the structural defects and provide a reliable support for the interconnects structure fabrication.
Qinghua WangSatoshi KishimotoHuimin XieKewei XuJianfeng Wang
The fabrication technique of micro/nano-scale speckle patterns with focused ion beam (FIB) system is studied for digital image correlation (DIC) measurement under a scanning electron microscope (SEM).The speckle patterns are fabricated by directly etching the counterpart of the specimen to the black part of a template.Mean intensity gradient is used to evaluate the quality of these SEM images of speckle patterns fabricated based on different templates to select an optimum template.The pattern size depending on the displacement measurement sensitivity is adjusted by altering the magnification of FIB according to the relation curve of the etching size versus magnification.The influencing factors including etching time and ion beam current are discussed.Rigid body translation tests and rotation tests are carried out under SEM to verify the reliability of the fabricated speckle patterns.The calculated values are in good agreement with the imposed ones.
LI YanJieXIE HuiMinLUO QiangGU ChangZhiHU ZhenXingCHEN PengWanZHANG QingMing
Optical full-field measurement methods are now widely applied in various domains. In general,the displacement fields can be directly obtained from the measurement,however in mechanical analysis strain fields are preferred.To extract strain fields from noisy displacement fields is always a challenging topic.In this study,a finite element method for smoothing displacement fields and calculating strain fields is proposed.An experimental test case on a holed aluminum specimen under tension is applied to validate this method.The heterogeneous displacement fields are measured by digital image correlation(DIC).By this proposed method,the result shows that the measuring noise on experimental displacement fields can be successfully removed,and strain fields can be reconstructed in the arbitrary area.
B.Q.Guo,~(1,a)) H.M.Xie,~(1,b)) Y.J.Li,~1P.W.Chen,~2and Q.M.Zhang~2 1) AML,Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China 2) State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology,Beijing 100081, China
In this paper,a new method combining focused ion beam(FIB)and scanning electron microscope(SEM)Moirétechnique for the measurement of residual stress at micro scale is proposed.The FIB is employed to introduce stress relief like the macro ring-core method and fabricate gratings with a frequency of 5000 lines/mm on the measured area of the sample surface.Three groups of gratings in different radial directions are manufactured in order to form a micro-scale strain rosette.After milling ring-core by FIB,the deformation incurred by relief of the stress will be recorded with the strain rosette.The displacement/strain field can be measured using SEM scanning Moiréwith random phase-shifting algorithm.In this study,the Nickel alloy GH4169 sample(which was processed by laser shock peening)is selected as a study object to determine its residual stress.The results showed that the components of the in-plane principal stresses were-359 MPa and-207 MPa,respectively,which show good agreement with the results obtained from the available literature.