您的位置: 专家智库 > >

国家教育部博士点基金(20120092120036)

作品数:5 被引量:15H指数:2
相关作者:舒华忠伍家松姜龙玉韩旭魏黎明更多>>
相关机构:东南大学中法生物医学信息研究中心雷恩第一大学更多>>
发文基金:国家教育部博士点基金国家自然科学基金国家重点基础研究发展计划更多>>
相关领域:自动化与计算机技术电子电信更多>>

文献类型

  • 5篇中文期刊文章

领域

  • 4篇自动化与计算...
  • 1篇电子电信

主题

  • 2篇QUATER...
  • 1篇信号
  • 1篇信号处理
  • 1篇神经网
  • 1篇神经网络
  • 1篇网络
  • 1篇卷积
  • 1篇卷积神经网络
  • 1篇快速傅里叶变...
  • 1篇傅里叶
  • 1篇傅里叶变换
  • 1篇NET
  • 1篇NETWOR...
  • 1篇SCA
  • 1篇SIGNAL...
  • 1篇TTE
  • 1篇USING
  • 1篇WAVELE...
  • 1篇ALGORI...
  • 1篇CLASSI...

机构

  • 5篇东南大学
  • 3篇中法生物医学...
  • 1篇雷恩第一大学

作者

  • 5篇伍家松
  • 5篇舒华忠
  • 2篇韩旭
  • 2篇姜龙玉
  • 1篇杨冠羽
  • 1篇张旭
  • 1篇廖帆
  • 1篇吴丹
  • 1篇严路
  • 1篇魏黎明

传媒

  • 4篇Journa...
  • 1篇电子与信息学...

年份

  • 1篇2017
  • 3篇2015
  • 1篇2013
5 条 记 录,以下是 1-5
排序方式:
Performance evaluation of wavelet scattering network in image texture classification in various color spaces被引量:2
2015年
The optimized color space is searched by using the wavelet scattering network in the KTH_TIPS_COL color image database for image texture classification. The effect of choosing the color space on the classification accuracy is investigated by converting red green blue (RGB) color space to various other color spaces. The results show that the classification performance generally changes to a large degree when performing color texture classification in various color spaces, and the opponent RGB-based wavelet scattering network outperforms other color spaces-based wavelet scattering networks. Considering that color spaces can be changed into each other, therefore, when dealing with the problem of color texture classification, converting other color spaces to the opponent RGB color space is recommended before performing the wavelet scattering network.
伍家松姜龙玉韩旭Lotfi Senhadji舒华忠
Algorithm for reconstructing compressed sensing color imaging using the quaternion total variation
2015年
A new method for reconstructing the compressed sensing color image by solving an optimization problem based on total variation in the quaternion field is proposed, which can effectively improve the reconstructing ability of the color image. First, the color image is converted from RGB (red, green, blue) space to CMYK (cyan, magenta, yellow, black) space, which is assigned to a quaternion matrix. Meanwhile, the quaternion matrix is converted into the information of the phase and amplitude by the Euler form of the quatemion. Secondly, the phase and amplitude of the quatemion matrix are used as the smoothness constraints for the compressed sensing (CS) problem to make the reconstructing results more accurate. Finally, an iterative method based on gradient is used to solve the CS problem. Experimental results show that by considering the information of the phase and amplitude, the proposed method can achieve better performance than the existing method that treats the three components of the color image as independent parts.
廖帆严路伍家松韩旭舒华忠
Kernel principal component analysis network for image classification被引量:5
2015年
In order to classify nonlinear features with a linear classifier and improve the classification accuracy, a deep learning network named kernel principal component analysis network( KPCANet) is proposed. First, the data is mapped into a higher-dimensional space with kernel principal component analysis to make the data linearly separable. Then a two-layer KPCANet is built to obtain the principal components of the image. Finally, the principal components are classified with a linear classifier. Experimental results showthat the proposed KPCANet is effective in face recognition, object recognition and handwritten digit recognition. It also outperforms principal component analysis network( PCANet) generally. Besides, KPCANet is invariant to illumination and stable to occlusion and slight deformation.
吴丹伍家松曾瑞姜龙玉姜龙玉舒华忠
L_1-norm minimization for quaternion signals
2013年
An algorithm for recovering the quaternion signals in both noiseless and noise contaminated scenarios by solving an L1-norm minimization problem is presented. The L1-norm minimization problem over the quaternion number field is solved by converting it to an equivalent second-order cone programming problem over the real number field, which can be readily solved by convex optimization solvers like SeDuMi. Numerical experiments are provided to illustrate the effectiveness of the proposed algorithm. In a noiseless scenario, the experimental results show that under some practically acceptable conditions, exact signal recovery can be achieved. With additive noise contamination in measurements, the experimental results show that the proposed algorithm is robust to noise. The proposed algorithm can be applied in compressed-sensing-based signal recovery in the quaternion domain.
张旭伍家松杨冠羽Lotfi Senahdji舒华忠
基于分裂基-2/(2a)FFT算法的卷积神经网络加速性能的研究被引量:8
2017年
卷积神经网络在语音识别和图像识别等众多领域取得了突破性进展,限制其大规模应用的很重要的一个因素就是其计算复杂度,尤其是其中空域线性卷积的计算。利用卷积定理在频域中实现空域线性卷积被认为是一种非常有效的实现方式,该文首先提出一种统一的基于时域抽取方法的分裂基-2/(2a)1维FFT快速算法,其中a为任意自然数,然后在CPU环境下对提出的FFT算法在一类卷积神经网络中的加速性能进行了比较研究。在MNIST手写数字数据库以及Cifar-10对象识别数据集上的实验表明:利用分裂基-2/4 FFT算法和基-2 FFT算法实现的卷积神经网络相比于空域直接实现的卷积神经网络,精度并不会有损失,并且分裂基-2/4能取得最好的提速效果,在以上两个数据集上分别提速38.56%和72.01%。因此,在频域中实现卷积神经网络的线性卷积操作是一种十分有效的实现方式。
伍家松达臻魏黎明SENHADJI Lotfi舒华忠
关键词:信号处理卷积神经网络快速傅里叶变换
共1页<1>
聚类工具0