In order to determine an appropriate attitude of three-axis stabilized communication satellites, this paper describes a novel attitude determination method using direction of arrival (DOA) estimation of a ground signal source. It differs from optical measurement, magnetic field measurement, inertial measurement, and global positioning system (GPS) attitude determination. The proposed method is characterized by taking the ground signal source as the attitude reference and acquiring attitude information from DOA estimation. Firstly, an attitude measurement equation with DOA estimation is derived in detail. Then, the error of the measurement equation is analyzed. Finally, an attitude determination algorithm is presented using a dynamic model, the attitude measurement equation, and measurement errors. A developing low Earth orbit (LEO) satellite which tests mobile communication technology with smart antennas can be stabilized in three axes by corporately using a magnetometer, reaction wheels, and three-axis magnetorquer rods. Based on the communication satellite, simulation results demonstrate the effectiveness of the method. The method could be a backup of attitude determination to prevent a system failure on the satellite. Its precision depends on the number of snapshots and the input signal-to-noise ratio (SNR) with DOA estimation.
Safety-critical avionics systems which become more complex and tend to integrate multiple functionalities with different levels of criticality for better cost and power efficiency are subject to certifications at various levels of rigorousness. In order to simultaneously guarantee temporal constraints at all different levels of assurance mandated by different criticalities, novel scheduling techniques are in need. In this paper, a mixed-criticality sporadic task model with multiple virtual deadlines is built and a certification-cognizant dynamic scheduling approach referred as earliest virtual-deadline first with mixed-criticality(EVDF-MC) is considered, which exploits different relative deadlines of tasks in different criticality modes. As for the corresponding schedulability analysis problem, a sufficient and efficient schedulability test is proposed on the basis of demand-bound functions derived in the mixed-criticality scenario. In addition, a modified simulated annealing(MSA)-based heuristic approach is established for virtual deadlines assignment. Experiments performing simulations with randomly generated tasks indicate that the proposed approach is computationally efficient and competes well against the existing approaches.