In this work,based on the liquid-drop model and considering the shell correction,we propose a simple formula to calculate the released energy of proton radioactivity(Q_(p)).The parameters of this formula are obtained by fitting the experimental data of 29 nuclei with proton radioactivity from ground state.The standard deviation between the theoretical values and experimental ones is only 0.157 Me V.In addition,we extend this formula to calculate 51 proton radioactivity candidates in region 51≤Z≤83 taken from the latest evaluated atomic mass table AME2016 and compared with the Q_(p)calculated by WS4 and HFB-29.The calculated results indicate that the evaluation ability of this formula for Q_(p)is inferior to WS4 while better than HFB-29.
基于两势方法(two–potential–approach,TPA)系统研究了偶-偶核、奇-A核和奇-奇核α衰变半衰期。为了考虑原子核的壳结构的影响而导致的实验半衰期与计算结果之间的偏差,引入了与α结团形成概率相关的禁戒因子和预形成因子。结合前期相关工作[X. D. Sun et al., Phys. Rev. C 93, 034316 (2016); X. D. Sun et al., Phys. Rev. C 95, 014319 (2017);X. D. Sun et al., Phys. Rev. C 95, 044303 (2017)],考虑到壳效应对α粒子预形成的影响,通过分析α衰变半衰期的实验数据,拟合得到了α粒子预形成因子/禁戒因子修正公式的参数,得到了α衰变预形成因子/禁戒因子的计算结果,证实了壳效应及质子-中子相互作用在α结团形成过程中起着重要的作用,离壳越近预形成概率越小离壳越远预形成概率越大。
In this study,we systematically investigate theαdecay preformation factors,Pα,and theαdecay half-lives of 152 nuclei around Z=82,N=126 closed shells based on the generalized liquid drop model(GLDM)with Pαbeing extracted from the ratio of the calculatedαdecay half-life to the experimental one.The results show that there is a remarkable linear relationship between Pαand the product of valance protons(holes)Np and valance neutrons(holes)Nn.At the same time,we extract theαdecay preformation factor values of the even–even nuclei around the Z=82,N=126 closed shells from the study of Sun et al.[J.Phys.G:Nucl.Part.Phys.,45:075106(2018)],in which theαdecay was calculated by two different microscopic formulas.We find that theαdecay preformation factors are also related to NpNn.Combining with our previous studies[Sun et al.,Phys.Rev.C,94:024338(2016);Deng et al.,ibid.96:024318(2017);Deng et al.,ibid.97:044322(2018)]and that of Seif et al.,[Phys.Rev.C,84:064608(2011)],we suspect that this phenomenon of linear relationship for the nuclei around the above closed shells is model-independent.This may be caused by the effect of the valence protons(holes)and valence neutrons(holes)around the shell closures.Finally,using the formula obtained by fitting theαdecay preformation factor data calculated by the GLDM,we calculate theαdecay half-lives of these nuclei.The calculated results agree with the experimental data well.
Hong-Ming LiuYou-Tian ZouXiao PanXiao-Jun BaoXiao-Hua Li
The present work is a continuation of our previous paper[J.-G. Deng, et al., Chin. Phys. C, 41:124109 (2017)]. In the present work, the α decay half-life of the unknown nucleus 296Og is predicted within the two-potential approach and the hindrance factors of all 20 even-even nuclei in the same region as 296Og, i.e. proton number 82 〈 Z 〈 126 and neutron number 152 〈 N 〈 184, from 250Cm to 294Og, are extracted. The prediction is 1.09 ms within a factor of 5.12. In addition, based on the latest experimental data, a new set of parameters of α decay hindrance factors for the even-even nuclei in this region, considering the shell effect and proton-neutron interaction, are obtained.
Jun-Gang DengJie-Cheng ZhaoJiu-Long ChenXi-Jun WuXiao-Hua Li