A generalized nonlinear Baker failure criterion is employed with the upper bound limit analysis to study the surrounding rock stability of underground cavities. A three-dimensional(3D) failure mode is established by extending the two-dimensional(2D) failure mode, which offers an upper bound expression of the surrounding rock pressure. This method is validated with a series of examples before the influence of four parameters of scale parameter, curvature parameter, shift parameter and lateral pressure coefficient, on the surrounding rock pressure is analyzed. According to these results, failure ranges of the underground cavities are determined. The following conclusions are reached:(1) the proposed approach is more accurate to predict surrounding rock pressure than the Mohr-Coulomb failure criterion;(2) the surrounding rock with large scale parameter, curvature parameter, shift parameter, and lateral pressure coefficient can lead to a more stable underground cavity;(3) the failure range in 3D mode can be predicted according to the upper bound solutions.
Zhi-zhen LIUPing CAOHang LINJing-jing MENGYi-xian WANG
Direct shear tests were conducted on the rock joints under constant normal load(CNL), while the acoustic emission(AE) signals generated during shear tests were monitored with PAC Micro-II system. Before and after shearing, the surfaces of rock joints were measured by the Talysurf CLI 2000. By correlating the AE events with the shear stress-shear displacement curve, one can observe four periods of the whole course of shearing of rock joints. By the contrast of AE location and actual damage zone, it is elucidated that the AE event is related to the morphology of the joint. With the increase of shearing times, the shear behavior of rock joints gradually presents from the response of brittle behavior to that of ductile behavior. By combining the results of topography measurement, four morphological parameters of joint surface, S p(the maximum height of joint surface), N(number of islands), A(projection area) and V(volume of joint) were introduced, which decrease with shearing. Both the joint roughness coefficient(JRC) and joint matching coefficient(JMC) drop with shearing, and the shear strength of rock joints can be predicted by the JRC-JMC model. It establishes the relationship between micro-topography and macroscopic strength, which have the same change rule with shearing.
桩侧负摩阻力是影响桩基工作性能的重要因素,而堆载和桩顶荷载对桩侧摩阻力的分布影响很大,为了研究其组合作用机理,采用拉格朗日差分法分析堆载和桩顶荷载组合作用下桩侧摩阻力分布、中性点位置变化规律以及桩体轴力分布。研究结果表明:负摩阻力主要出现在0.37~0.64倍桩长位置;当堆载小于或等于60 k Pa时,负摩阻力沿桩身向下先增大后减小并逐渐过渡到正摩阻力;当堆载大于60 k Pa时,负摩阻力沿桩身向下逐渐减小然后过渡到正摩阻力;桩体最大轴应力与堆载和桩顶荷载具有明显的二元线性相关性;中性点位置变化规律受桩顶荷载和堆载组合值的影响,根据此规律得出二元方程式,可用于快速估算中性点的位置。