Based on the high flux synchrotron X-ray of the Shanghai Synchrotron Radiation Facility (SSRF), high precision 3D digital models of diesel nozzle tips have been established by X-ray micro-tomography technology, which reveal the internal surfaces and structures of orifices. To analyze the machining precision and characteristics of orifice processing methods, an ap- proach is presented based on the parameters of the internal structures of nozzle orifices, including the nozzle diameter, the orifice inner surface waviness, the eccentricity distance and the angle between orifices. Using this approach, two kinds of nozzle orifice processing methods, computerized numerical control drilling and electric discharge machining, have been studied and compared. The results show that this approach enables a simple, direct, and comprehensive contrastive analysis of nozzle orifice processing methods. When processing a single orifice, the electric discharge machining method has obvious advantages. However, when there are multiple orifices, the error levels of the two methods are similar in relation to the symmetry of distribution of the orifices.
Zhi-jun WU Zhi-long LI Wei-di HUANG Hui-feng GONG Ya GAO Jun DENG Zong-jie HU
Based on schlieren imaging method the shock wave generated by diesel injector has been investigated,and the influences of ambient gas property, the progress of the spray, ambient gas density and ambient gas temperature on shock wave have been analyzed. The results show that:the images of spray shock wave are cleaner using sulfur hexafluoride(SF6) as ambient gas than using the nitrogen(N2); at the beginning of injection, shock wave phenomenon does not generate immediately as the fuel leave the nozzle because of the needle movement, and the hesitation is decided by the injection condition and characteristics of injector. The generation of shock wave in the spray tip and the detachment of shock wave from the spray tip show little effect on the spray macroscopic characteristics. The ambient gas density and temperature have a significant effect on the maximum of spray tip velocity, types of shock wave and the detachment timing of shock wave from the spray tip.
The design of fuel nozzle orifices at micrometer scales is crucial for generating desired fuel spray patterns, and consequently optimizing fuel combustion and emission in internal combustion engines. Although there have been several recent advancements in the characterization of orifice internal geometries, quantitative studies on the orifice internal wall surface characteristics are still challeges due to the lack of effective measuring methods. A new method for quantifying the internal wall surface characteristics of fuel nozzle micro-orifices is presented in this study to achieve a better understanding and prediction of spray characteristics: Firstly, by using the synchrotron X-ray micro CT technology, a three-dimensional digital model of the fuel nozzle tip was constructed. Secondly, a data post-processing technique was then applied to unfold the orifice internal wall surface to a flat base plane. Finally, the conventional surface characteristic quantification techniques can be used to evaluate the wall surface characteristics. Two diesel nozzles with identical orifice geometry design but different hydraulic grinding time were measured using this method. One nozzle was hydro-ground for 2 s while the other was not. The internal wall surfaces of the two orifices were successfully unfolded to base planes and their surface characteristics were respectively analyzed. The surface fluctuation data were perfectly reproduced by a Gaussian distribution function. The standard deviations of the distribution demonstrate the fluctuation range and the distribution of the entire surface fluctuation profiles. As an effective parameter to evaluate the hydraulic grinding process and the spray behaviors, the standard deviation was considered feasible for the analysis of the orifice internal wall surface characteristics.
LI ZhiLongZHAO WenBoWU ZhiJunGONG HuiFengHU ZongJieDENG JunLI LiGuang