Particle number size distribution from 10 to 10,000 nm was measured by a wide-range particle spectrometer (WPS-1000XP) at a downwind site north of downtown Lanzhou, western China, from 25 june to 19 July 2006. We first report the pollution level, diurnal variation of particle concentration in different size ranges and then introduce the characteristics of the particle formation processes, to show that the number concentration of ultrafine particles was lower than the values measured in other urban or suburban areas in previous studies, However, the fraction of ultrafine particles in total aerosol number concentration was found to be much higher. Furthermore, sharp increase of ultrafine particle concentration was frequently observed at noon. An examination of the diurnal pattern suggests that the burst of the ultrafine particles was mainly due to nucleation process. During the 25-day observation, new particle formation (NPF) from homogeneous nucleation was observed during 33% of the study period. The average growth rate of the newly formed particles was 4.4 nm/h, varying from 1.3 to 16,9 nm/h. The needed concentration of condensable vapor was 6.1 × 10^7 cm-3, and its source rate was 1.1× 10^6 cm-3 s 1. Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rate was 68.3%.
New particle formation is a key process in shaping the size distribution of aerosols in the atmosphere.We present here the measurement results of number and size distribution of aerosol particles (10–10000 nm in diameter) obtained in the summer of 2008,at a suburban site in Beijing,China.We firstly reported the pollution level,particle number size distribution,diurnal variation of the particle number size distribution and then introduced the characteristics of the particle formation processes.The results showed that the number concentration of ultrafine particles was much lower than the values measured in other urban or suburban areas in previous studies.Sharp increases of ultrafine particle count were frequently observed at noon.An examination of the diurnal pattern suggested that the burst of ultrafine particles was mainly due to new particle formation promoted by photochemical processes.In addition,high relative humidity was a key factor driving the growth of the particles in the afternoon.During the 2-month observations,new particle formation from homogeneous nucleation was observed for 42.7% of the study period.The average growth rate of newly formed particles was 3.2 nm/hr,and varied from 1.2 to 8.0 nm/hr.The required concentration of condensable vapor was 4.4×10 7 cm-3,and its source rate was 1.2×10 6 cm-3 sec-1.Further calculation on the source rate of sulphuric acid vapor indicated that the average participation of sulphuric acid to particle growth rates was 28.7%.