Volterra series is a powerful mathematical tool for nonlinear system analysis,and there is a wide range of nonlinear engineering systems and structures that can be represented by a Volterra series model.In the present study,the random vibration of nonlinear systems is investigated using Volterra series.Analytical expressions were derived for the calculation of the output power spectral density(PSD) and input-output cross-PSD for nonlinear systems subjected to Gaussian excitation.Based on these expressions,it was revealed that both the output PSD and the input-output crossPSD can be expressed as polynomial functions of the nonlinear characteristic parameters or the input intensity.Numerical studies were carried out to verify the theoretical analysis result and to demonstrate the effectiveness of the derived relationship.The results reached in this study are of significance to the analysis and design of the nonlinear engineering systems and structures which can be represented by a Volterra series model.
This paper is concerned with the connection between the Volterra series and the regular perturbation method in nonlinear systems analyses. It is revealed for the first time that, for a forced polynomial nonlinear system, if its derived linear system is a damped dissipative system, the steady response obtained through the regular perturbation method is exactly identical to the response given by the Volterra series. On the other hand, if the derived linear system is an undamped conservative system, then the Volterra series is incapable of modeling the forced polynomial nonlinear system. Numerical examples are further presented to illustrate these points. The results provide a new criterion for quickly judging whether the Volterra series is applicable for modeling a given polynomial nonlinear system.