2025年1月28日
星期二
|
欢迎来到佛山市图书馆•公共文化服务平台
登录
|
注册
|
进入后台
[
APP下载]
[
APP下载]
扫一扫,既下载
全民阅读
职业技能
专家智库
参考咨询
您的位置:
专家智库
>
>
国家自然科学基金(19571005)
作品数:
1
被引量:0
H指数:0
相关作者:
莫小欢
更多>>
相关机构:
北京大学
更多>>
发文基金:
国家自然科学基金
更多>>
相关领域:
理学
更多>>
相关作品
相关人物
相关机构
相关资助
相关领域
题名
作者
机构
关键词
文摘
任意字段
作者
题名
机构
关键词
文摘
任意字段
在结果中检索
文献类型
1篇
中文期刊文章
领域
1篇
理学
主题
1篇
FINSLE...
1篇
F
机构
1篇
北京大学
作者
1篇
莫小欢
传媒
1篇
科学通报
年份
1篇
1997
共
1
条 记 录,以下是 1-1
全选
清除
导出
排序方式:
相关度排序
被引量排序
时效排序
Riemann-Finsler几何
1997年
1 历史回顾 弧长元素具有 的几何学,其中F关于dx^i为正1阶齐次函数,称为Riemann-Finsler几何(简称Finsler几何)。粗略地讲,F是微分流形上在x点切空间上Minkowskian范数F_x之集并且F_x光滑依赖于x。“Finsler几何”的名称由来于Finsler 1918年的论文,他在文章中探讨了度量(1)的曲线和曲面的几何。其实,Riemann早在1854年他的就职演说中便已提出讨论度量(1)的几何学。而后,1900年巴黎国际数学大会上,Hilbert的第23个问题专门探讨了弧长∫ds的变分学以及相关的几何问题。利用关于齐性函数的Euler定理,Hilbert讨论的∫ds可化为Finsler流形的射影球丛(即射线丛)上的一个线性微分形式——称为Hilbert形式。这个发普形式在Finsler几何的探讨中起重要作用。
莫小欢
关键词:
FINSLER空间
全选
清除
导出
共1页
<
1
>
聚类工具
0
执行
隐藏
清空
用户登录
用户反馈
标题:
*标题长度不超过50
邮箱:
*
反馈意见:
反馈意见字数长度不超过255
验证码:
看不清楚?点击换一张