The diffusion behavior driven by bounded noise under the influence of a coupled harmonic potential is investigated in a two-dimensional coupled-damped model. With the help of the Laplace analysis we obtain exact descriptions for a particle’s two-time dynamics which is subjected to a coupled harmonic potential and a coupled damping. The time lag is used to describe the velocity autocorrelation function and mean square displacement of the diffusing particle. The diffusion behavior for the time lag is also discussed with respect to the coupled items and the amplitude of bounded noise.
This work develops a fully discrete implicit-explicit finite element scheme for a parabolicordinary system with a nonlinear reaction term which is known as the FitzHugh-Nagumo model from physiology.The first-order backward Euler discretization for the time derivative,and an implicit-explicit discretization for the nonlinear reaction term are employed for the model,with a simple linearization technique used to make the process of solving equations more efficient.The stability and convergence of the fully discrete implicit-explicit finite element method are proved,which shows that the FitzHugh-Nagumo model is accurately solved and the trajectory of potential transmission is obtained.The numerical results are also reported to verify the convergence results and the st ability of the proposed method.
Li CaiYe SunFeifei JingYiqiang LiXiaoqin ShenYufeng Nie
In this work,a self-adjusting entropy-stable scheme is proposed for solving compressible Euler equations.The entropy-stable scheme is constructed by combining the entropy conservative flux with a suitable diffusion operator.The entropy has to be preserved in smooth solutions and be dissipated at shocks.To achieve this,a switch function,which is based on entropy variables,is employed to make the numerical diffusion term be automatically added around discontinuities.The resulting scheme is still entropy-stable.A number of numerical experiments illustrating the robustness and accuracy of the scheme are presented.From these numerical results,we observe a remarkable gain in accuracy.