According to the Ringel-Green theorem,the generic composition algebra of the Hall algebra provides a realization of the positive part of the quantum group.Furthermore,its Drinfeld double can be identified with the whole quantum group,in which the BGP-reflection functors coincide with Lusztig's symmetries.It is first asserted that the elements corresponding to exceptional modules lie in the integral generic composition algebra,hence in the integral form of the quantum group.Then it is proved that these elements lie in the crystal basis up to a sign.Eventually,it is shown that the sign can be removed by the geometric method.The results hold for any type of Cartan datum.
By using the Ringel-Hall algebra approach, we investigate the structure of the Lie algebra L(A) generated by indecomposable constructible sets in the varieties of modules for any finite- dimensional C-algebra A. We obtain a geometric realization of the universal enveloping algebra R(A) of L(A), this generalizes the main result of Riedtmann. We also obtain Green's formula in a geometric form for any finite-dimensional C-algebra A and use it to give the comultiplication formula in R(A).
Consider the canonical isomorphism between the positive part U+ of the quantum group Uq(g) and the Hall algebra H(Λ),where the semisimple Lie algebra g and the finite-dimensional hereditary algebra Λ share a Dynkin diagram.Chen and Xiao have given two algorithms to decompose the root vectors into linear combinations of monomials of Chevalley generators of U+,respectively induced by the braid group action on the exceptional sequences of Λ-modules and the structure of the Auslander-Reiten quiver of Λ.In this paper,we obtain the corresponding algorithms for the derived Hall algebra DH(Λ),which was introduced by Toen.We show that both algorithms are applicable to the lattice algebra and Heisenberg double in the sense of Kapranov.All the new recursive formulae have the same flavor with the quantum Serre relations.
SHENG Jie Department of Mathematical Sciences,Tsinghua University,Beijing 100084,China
In this paper, we study the category H (ρ) of semi-stable coherent sheaves of a fixed slope ρ over a weighted projective curve. This category has nice properties: it is a hereditary abelian finitary length category. We will define the Ringel-Hall algebra of H (ρ) and relate it to generalized Kac-Moody Lie algebras. Finally we obtain the Kac type theorem to describe the indecomposable objects in this category, i.e. the indecomposable semi-stable sheaves.