The determination of total glacial volume is important for the observation of climatic change and its consequences such as global sea-level rise. The tongue area of Glacier No. 4 of Sigong River over Mt. Bogda, eastern Tianshan was surveyed by ground-penetrating radar (GPR) and real time kinematic (RTK)-global positioning system (GPS) during the summer campaign 2009. In order to calculate the glacier volume, both co-kriging algorithm and estimation based on the theory of perfectly plastic material were employed. Results indicated that the ice-thickness distribution of the investigated glacier ranges from 0 to 105.0 m, with the mean thickness of 27.6 m in 2009. The corresponding ice volume was -0.076 km3 (-0.068 km3 water equivalent). The bedrock topography shows more undulating than the glacier surface. The difference of the calculated ice volume in this study and the estimated value from the empirical formula is large. Therefore, it is urgent to validate the applicability of the ex- isting empirical formula.
Puyu WangZhongqin LiWenbin WangHuilin LiFeiteng Wang
China has 46 377 glaciers with a total area of 59 425 km2, which accounts for 11%-14.5% of the total area of mountain glaciers in the world. As one of the largest mountain ranges in Central Asia and Northwest China, the Tianshan contains 15 935 glaciers with a total area of 15 416 km2. These glaciers are a vital source of water for more than 100 million people and for wildlife ecosystems in this vast arid and semi-arid land. Urumqi Glacier No. 1, the best monitored glacier in China, is located at the headwaters of the Urumqi River in eastern Tianshan and is within the core area of Central Asia.
The eastern Xinjiang Basin is desperately short of water. Most rivers in the basin originate in the high eastern Tianshan, which has abundant precipitation and numerous alpine glaciers. Fieldwork conducted on three reference glaciers around Mt. Bogda in 1981 and 2009 suggests that they all strongly melt in summer, a process that has tended to accelerate in recent decades. Based on topographic maps from 1962 and 1972 and 2005/2006 satellite imagery, we investigated 203 glaciers near Mt. Bogda and 75 glaciers near Mt. Harlik. The results show that the surface area of the Mt. Bogda glaciers decreased by 21.6% (0.49% a?1) from 1962 to 2006. This was accompanied by a 181 m decrease in length and a 28% drop in ice volume. In the Mt. Harlik region, areal extent was reduced by 10.5% (0.32% a?1), length by 166 m, and volume by 14% between 1972 and 2005. South-facing glaciers lost more of their area than those that are north facing, yielding an areal loss of 25.3% and 16.9% for southern and northern slopes of Mt. Bogda, respectively, and 12.3% and 6.6% for the comparable slopes of Mt. Harlik. Glaciers smaller than 0.5 km2 in area experienced the strongest retreat, whereas glaciers larger than 2 km2 in area experienced gentle recession but may be the main contributors in the future to river runoff. Glacial ablation in eastern Xinjiang tends to be strong, and the water resources in this region are deteriorating. Also, a heavy reduction in the capacity of the local karez system, as well as a significant change in river runoff, can be related to glacial retreat. Combined, this will adversely affect the downstream city of Urumqi and the Turfan Basin.
Snow chemistry on the glaciers of alpine regions is a good indicator of atmospheric environmental change.We examine snow chemistry in three snowpits at different altitudes on the Haxilegen Glacier No.51,in the Kuitun River source,Tian Shan,China,during July-September 2004 to 2007.We use correlation analysis,factor analysis and sea-salt tracing methods to examine the characteristics and sources of major ions and mineral dust particles in the snow.Results show that mineral dust particles and major ions in the snow pits vary seasonally.During the Asian dust period in springtime,the concentration of mineral dust particles and major ions deposited in snow is high,while the concentration is relatively low during the non-dust period of summer and autumn.This may be caused by dust storm activity in central Asia.The order of major ionic concentrations in the snow packs was determined to be Ca2+ > SO42-> NH4+ > NO3-> Cl-> Na+ > Mg2+ > K+.Ca2+ was the dominant cation;SO42- was the dominant anion.We find,with the exception of NO3-,that the variabilities of ionic concentrations are highly correlated.Results show that the glacier region was significantly affected by dust activity and anthropogenic source.The major ions,especially Na+,originate from dust sources of central Asia and from the Ocean,transported by the westerly winds.