您的位置: 专家智库 > >

国家自然科学基金(11101431)

作品数:3 被引量:0H指数:0
相关机构:中国石油大学(华东)更多>>
发文基金:国家自然科学基金更多>>
相关领域:理学自动化与计算机技术更多>>

文献类型

  • 3篇中文期刊文章

领域

  • 3篇理学
  • 1篇自动化与计算...

主题

  • 1篇英文
  • 1篇收敛性
  • 1篇收敛性分析
  • 1篇拟抛物方程
  • 1篇抛物
  • 1篇抛物方程
  • 1篇POINTW...
  • 1篇POROUS...
  • 1篇PROBLE...
  • 1篇COMBIN...
  • 1篇CONSTR...
  • 1篇CONVEC...
  • 1篇EQUATI...
  • 1篇ERROR_...

机构

  • 1篇中国石油大学...

传媒

  • 1篇应用数学
  • 1篇Journa...
  • 1篇Scienc...

年份

  • 1篇2014
  • 2篇2013
3 条 记 录,以下是 1-3
排序方式:
拟抛物方程的两类分裂正定混合元方法(英文)
2013年
本文对拟抛物方程构造两种分裂对称正定混合元方法.通过适当选取变分形式,格式分裂成两个独立对称正定子格式,并且方法不需要验证LBB条件.收敛性分析表明方法关于变量u和引进的变量σ分别具有L2(Ω)和H(div;Ω)范数意义下的最优收敛阶.最后,通过数值实验验证了方法的有效性.
郭会张建松
关键词:收敛性分析
A combined mixed finite element method and local discontinuous Galerkin method for miscible displacement problem in porous media
2014年
A combined method consisting of the mixed finite element method for flow and the local discontinuous Galerkin method for transport is introduced for the one-dimensional coupled system of incompressible miscible displacement problem. Optimal error estimates in L∞(0,T;L2) for concentration c,in L2(0,T;L2)for cxand L∞(0,T;L2) for velocity u are derived. The main technical difficulties in the analysis include the treatment of the inter-element jump terms which arise from the discontinuous nature of the numerical method,the nonlinearity,and the coupling of the models. Numerical experiments are performed to verify the theoretical results. Finally,we apply this method to the one-dimensional compressible miscible displacement problem and give the numerical experiments to confirm the efficiency of the scheme.
GUO HuiZHANG QingHuaYANG Yang
A CHARACTERISTIC FINITE ELEMENT METHOD FOR CONSTRAINED CONVECTION-DIFFUSION-REACTION OPTIMAL CONTROL PROBLEMS
2013年
In this paper, we develop a priori error estimates for the solution of constrained convection-diffusion-reaction optimal control problems using a characteristic finite element method. The cost functional of the optimal control problems consists of three parts: The first part is about integration of the state over the whole time interval, the second part refers to final-time state, and the third part is a regularization term about the control. We discretize the state and co-state by piecewise linear continuous functions, while the control is approximated by piecewise constant functions. Pointwise inequality function constraints on the control are considered, and optimal a L2-norm priori error estimates are obtained. Finally, we give two numerical examples to validate the theoretical analysis.
Hongfei FuHongxing RuiHui Guo
共1页<1>
聚类工具0