High entropy alloy has attracted increasing attentions.However,to enhance the alloy strength often leads to impairment of the ductility,or vice versa.Here we reported a heat treatment approach on AlCrFeNi2Ti0.5 high entropy alloy,which can elevate the strength and ductility simultaneously.An ingot of AlCrFeNi2Ti0.5 weighing 2.5 kg was firstly fabricated by medium frequency induction melting.Then samples from the same height of the bulk ingot were annealed for 6 h at 600,700,800 and 1000 ℃,respectively.After 1000 ℃ annealing,an optimal microstructure was obtained by using our approach which can make some precipitation particles distribute homogeneously in the dendrite interior while keep the interdendrite structure as a single solid solution phase.The mechanical test on this AlCrFeNi2Ti0.5 alloy sample showed that,the compressive fracture strength σbc was increased by about600 MPa and the plastic strain ep was doubled,compared with those of the as-cast sample.Our approach can be readily adapted to large-scale industrial production of high entropy alloys with high strength and ductility by proper annealing treatment.
Li JiangHui JiangYiping LuTongmin WangZhiqiang CaoTingju Li
The eutectic CoFeNi2V0.5Nb0.75 high entropy alloys (HEAs) were heated at 500, 600, 700, 800 and 1000 ℃, respectively for 6 h and subsequently quenched in the water to investigate their thermal stability and phase transformation at high temperature. The microstructure and mechanical properties of the samples were investigated by scanning electron microscopy, X-ray diffraction, compressive and hardness tests. It was found that the as-cast CoFeNi2V0.5Nb0.75 HEAs showed a eutectic microstructure with alternating fcc solid solution phase and Fe2Nb-type Laves phase. The NbNi4-type intermetallic phase appeared when the heat-treated temperature was higher than 600 ℃. With increasing quenching temperature, the volume fraction of the NbNi4-type intermetallic phase increased while that of the eutectic regions decreased. The sample quenched at 800 ℃ showed the most excellent comprehensive mechanical properties; its fracture strength, yield strength and plastic strain were as high as 2586.76 MPa, 2075.18 MPa and 16.73%, respectively. Moreover, the eutectic CoFeNi2V0.5Nb0.75 HEAs exhibited apparent age hardening, especially quenched at 700 ℃, the hardness reached up to the maximum value of HV 727.52.
The influences of slight amount of B element on the microstructure and properties of AlCoCrFeNiBx high entropy alloys(x = 0,0.01,…,0.09 and 0.1,mole fraction) were investigated.The AlCoCrFeNi high entropy alloy exhibits equiaxed grain structures with obvious composition segregation.However,with the addition of B element,the alloys exhibit dendrite structures.Inside the dendrites,spinodal decomposition structure can be clearly observed.With the addition of B element,the crystal structures change from(B2 + BCC) to(B2 + BCC + FCC) structures,and the hardness firstly increases from HV 486.7 to HV 502.4,then declines to HV 460.7(x ≥ 0.02).The compressive fracture strength firstly shows a trend of increasing,and then declining(x ≥ 0.08).The coercive forces and the specific saturation magnetizations of the alloys decrease as B addition contents increase,the decreasing coercive forces show a better soft magnetic behavior.
In an electromagnetic field, the morphology of a binary faceted-faceted (FF) Ni31Si12-Ni2Si eutectic microstructure and the alloy's mechanical properties were investigated. Hardness experiments demonstrated that the solidified ingots were significantly strengthened, and the hardness was improved to 63.1 and 786.6 on the Rockwell hardness C and Vickers hardness scales, respectively. Tests of friction and wear in stirred FF eutectic alloys showed excellent anti-fatigue and anti-adhesion wear performance. Alloy changed from an anomalous microstructure to a refined quasi-regular structure, and there was an increase in the lamellar microstructure fraction. The formation process of the refined quasi-regular microstructure and the resulting mechanical properties were investigated.
LU YiPingLI GuoBinDU YanYanJI YanShuoJIN QunLI TingJu