The conventional car-following theory is based on the assumption that vehicles will travel along the center line of lanes. However, according to the field survey data, in complex traffic conditions, a lateral separation between the leader and the follower frequently occurs. Accordingly, by taking lateral separation into account, we redefined the equation of time-to-collision (TTC) using visual angle information. Based on the stimulus-response framework, TTC was introduced into the basic General Motors (GM) model as a stimulus, and a non-lane-based car-following model of steady-state traffic flow was developed. The property of flow-density relationship was further investigated after integrating the proposed car-following model with different parameters. The results imply that the property of steady-state traffic flow and the capacity of each lane are highly relevant to the microscopic staggered car-following behavior, and the proposed model significantly enhances the practicality of the human driving behavior model.
In order to describe the time-headway distribution more precisely in urban traffic network,the mixed distribution model was introduced which has been widely used in mathematical statistics,and a capacity model of unsignalized intersections was obtained based on gap acceptance theory.The new model is suitable for absolute and limited priority controlled conditions and can be regarded as a more general form which handles simple headway distributions including lognormal distribution,negative exponential distribution and shifted negative exponential distribution.Through analyses of the main influencing factors in this model,the proportion of free flowing and the standard variance of gaps between any two continuous following vehicles are high sensitivity with the capacity when major stream volume is low.Besides,the capacity is affected deeply by the mean value of following vehicle gaps when major stream value is fixed and the proportion of free flowing is small.At last,the observed minor stream capacity is obtained by the survey date in Changchun city,and the average relative error between the theoretical capacity proposed in this paper is 13.73%,meanwhile the accuracy increases by 16.68% compared with the theoretical value when major stream obeys shifted negative exponential distribution.