晚期糖基化终末产物受体(receptor for advanced glycation end products,RAGE)是一种多配体的膜受体,与配体结合后可启动多条信号通路,引起细胞内氧化应激和炎症反应等,导致细胞功能紊乱。RAGE在糖尿病并发症、炎症、阿尔采末病和肿瘤等疾病的发生和发展中起重要作用。应用可溶性RAGE(sRAGE)、抗RAGE抗体或干扰RAGE与配体结合的抑制剂阻断RAGE的活化,是防治上述疾病的新策略。该文对RAGE配体与疾病的关系和RAGE-配体激活的信号通路进行阐述,并对近年来关于RAGE抑制剂的研究进展进行总结。
Baicalin(BA) is the most well-known flavonoid present in Radix Scutellariae. The aim of this study was to explore whether the pharmacokinetic behavior of BA in rat brain can be affected by Panax notoginsenosides(PNS), and to assess the possible mechanism for the observed effects. Specific HPLC and HPLC/MS/MS methods were developed and validated for the determination of BA in the rat plasma and brain using carbamazepine as an internal standard. BA was found to enter rat brain quickly after a single intravenous dose. When co-administered with PNS, clearance(CL) of BA from rat plasma decreased by 50.00%, while the area under the curve AUC0-t and AUC0-∞ increased 94.69% and 87.68%, respectively. On the other hand, some pharmacokinetic parameters of BA in rat brain had obvious differences after PNS was administered, such as an increase in Tmax from 5 min to 15 min, an increase in AUC0-t and AUC0-∞ by 42.75% and 29.39%, respectively, as well as a decrease in CL by 27.95%. Together, these results indicate that PNS can decrease the elimination rate of BA from rat plasma, promote the penetration of BA into rat brain, increase the concentration and slow down the elimination of BA from rat brain. The data provide important information that compatibility with PNS can promote the consequent effects of BA for the treatment of encephalopathy.
YANG Yan-FangLI ZhiXIN Wen-FengWANG Yong-YanZHANG Wen-Sheng