Leaves of terrestrial and aquatic plants are home to a wide diversity of bacterial species. However, the diversity and variability of epiphytic bacteria on their submerged plant hosts remains poorly understood. We investigated the diversity and composition of epiphytic bacteria from two common submerged macrophytes: Vallisneria natans and Hydrilla verticillata in Taihu Lake, Jiangsu, China, using methods of terminal restriction fragment length polymorphisms (T-RFLP) and clone library analyses targeted at bacterial 16S rRNA genes. The results show that: (1) the libraries of the two waterweeds contain wide phylogenetic distribution of bacteria, and that the sequences of the two libraries can be separated into 93 OTUs (at 97% similar value); (2) Betaproteobacteria, including Burkholderiales, was the most abundant bacterial group on both plants. Cyanobacteria and Gammaproteobacteria were the second largest groups on V. natans and H. verticillata, respectively. Both clone libraries included some sequences related to those of methanotrophs and nitrogen-fixing bacteria; (3) Cluster analysis of the T-RFLP profiles showed two distinct clusters corresponding to the two plant populations. Both ANOSIM of the T-RFLP data and Libshuff analysis of the two clone libraries indicated a significant difference in epiphytic bacterial communities between the two plants. Therefore, the epiphytic bacterial communities on submerged macrophytes appear to be diverse and host-specific, which may aid in understanding the ecological functions of submerged macrophytes in general.
After the application of methionine, a progressive and significant increase occurred in five volatile organic sulfur compounds (VOSCs): methanethiol (MESH), dimethyl sulfide (DMS), dime^yl disulfide (DMDS), dimethyl trisulfide (DMTS) and dimethyl tetrasulfide (DMTeS). Even in the untreated control without a methionine addition, methionine and its catabolites (VOSCs, mainly DMDS) were found in considerable amounts that were high enough to account for the water's offensive odor. However, blackening only occurred in two methionine-amended treatments. The VOSCs production was observed to precede black color development, and the reaching of a peak value for total VOSCs was often followed by water blackening. The presence of glucose stimulated the degradation of methionine while postponing the occurrence of the black color and inhibiting the production of VOSCs. In addition, DMDS was found to be the most abundant species produced after the addition of methionine alone, and DMTeS appeared to be the most important compound produced after the addition of methionine+glucose. These results suggest that methionine acted as an important precursor of the VOSCs in lakes suffering from algea-induced black bloom. The existence of glucose may change the transformation pathway of methionine into VOSCs to form larger molecular weight compounds, such as DMTS and DMTeS.
As a diagenetic progress, bioturbation influences solute exchange across the sediment-water interface (SWI). Different benthic animals have various mechanical activities in sediment, thereby they may have different effects on solute exchange across the SWI. This laboratory study examined the impacts of different benthic animals on phosphorus dynamics across the SWI. Tubificid worms and Chironomidae larvae were introduced as model organisms which, based on their mechanical activities, belong to upward-conveyors and gallery-diffusers, respectively. The microcosm simulation study was carried out with a continuous flow culture system, and all sediment, water, and worms and larvae specimens were sampled from Taihu Lake, China. To compare their bioturbation effects, the same biomass (17.1 g wet weight (ww)/m ^2 ) was adopted for worms and larvae. Worms altered no oxygen penetration depth in sediment, while larvae increased the O 2 penetration depth, compared to the control treatment. Their emergence also enhanced sediment O 2 uptake. The oxidation of ferrous iron in pore water produced ferric iron oxyhydroxides that adsorbed soluble reactive phosphorus (SRP) from the overlying water and pore water. Larvae built obviously oxidized tubes with about 2 mm diameter and the maximum length of 6 cm in sediment, and significantly decreased ferrous iron and SRP in the pore water compared to the control and worms treatments. Worms constructed no visually-oxidized galleries in the sediment in contrast to larvae, and they did not significantly alter SRP in the pore water relative to the control treatment. The adsorption of ferric iron oxyhydroxides to SRP caused by worms and larvae inhibited SRP release from sediment. Comparatively, worms inhibited more SRP release than larvae based on the same biomass, as they successively renewed the ferric iron oxyhydroxides rich oxidation layer through their deposition.
Lei ZhangXiaozhi GuChengxin FanJingge ShangQiushi ShenZhaode WangJi Shen