The SiCf/SiC composites containing PyC interphase were prepared by chemical vapor infiltration process. The influences of thermal oxidation on the complex permittivity and microwave absorption properties of Si Cf/Si C composites were investigated in the frequency range of 8.2-12.4 GHz. Both the real and imaginary parts of the complex permittivity decreased after thermal oxidation. The composites after 100 h thermal oxidation showed that reflection loss exceeded-10 d B in the frequency of 9.7-11.9 GHz and the minimum value was-11.4 d B at 11.0 GHz. The flexural strength of composites decreased but fracture behavior was improved obviously after thermal oxidation. These results indicate that the SiCf/SiC composites containing PyC interphase after thermal oxidation possess good microwave absorbing property and fracture behavior.
The effects of dwell time on the phase structure, microstructure, and electrical properties were investigated for the 0.98(K0.sNa0.5)NbO3-0.02LaFeO3 ceramics (abbreviated as 0.98KNN-0.02LF). All the ceramics sintered for different dwell time are of pure phase and the peak intensity of the 0.98KNN-0.02LF ceramics becomes stronger with a longer dwell time. Denser microstructures with larger grain size are developed for the sample with a longer dwell time. The maximum dielectric permittivity decreases with increasing the dwell time, and the deteriorative dielectric properties are due to the increasing grain size and the domain wall motion. Ferroelectric properties results indicate that 2Pr value slightly decreases with increasing the dwell time, while the 2Ec value increases. Consequently, the 0.98KNN-0.02LF ceramic sintered at 1150 ℃ for 2 h shows optimum dielectric properties (er=2253 and tan fi〈5%) and ferroelectric properties (2Pr=34.51 gC/cm2 and 2Ec=5.07 kV/mm).
In this paper,the SiC fiber-reinforced SiC matrix composites with a 0.15μm thick pyrocarbon interphase(noted as SiC/PyC/SiC) were prepared by chemical vapor infiltration(CVI).The SiCf/PyC/SiC were oxidized in air at950 "C for 50 h.The dielectric properties after this high temperature oxidation were investigated in X-band from room temperature(RT) to 700℃.Results suggested that:ε′ of the SiC_f/PyC/SiC after oxidation increased at first then decreased with temperature elevating;ε″ increased with temperature raising in the temperature range studied.
SONG HuihuiZHOU WanchengLUO FaQING YuchangCHEN MalinLI Zhimin