In order to avoid contamination from the crucible and to modify the structures,a new solidification method based on cold crucible technology was used to prepare silicon ingots.A silicon ingot with square cross section was directionally solidified with a cold crucible.The mechanism of the cold crucible directional solidification of silicon ingot was revealed.Due to the induction heat that was released in the surface layer and the incomplete contact between the crucible and the melt,the lateral heat loss was reduced and the silicon ingot was directionally solidified.The structures,dislocation defects and the grain growth orientation of the ingot were determined.The results show that neither intergranular nor intragranular precipitates are found in the ingot,except for the top part that was the last to solidify.The average dislocation density is about 1 to 2×106 cm-2.The grains are preferentially <220> orientated.
In the present work, the strength and distribution of electromagnetic field in the square cold crucible that designed for casting multicrystalline silicon were measured and analyzed by using a small coil method. The results show that in the perpendicular direction the maximum of magnetic flux density (B) appears at the position slightly above the middle of the coil, and then B attenuates toward both sides, and decreases more to the bottom of the crucible. In the horizontal direction, from the edge (comer) to the center, B firstly decreases gradually, and then slightly increases in the center. While along the inner sides of the crucible, the distribution is relatively uniform, especially in the effective acting range. B increases with the increasing of the input power. Moving the coil to the top of the crucible, B increases and the effective acting range of the electromagnetic field becomes bigger. For the coils with different turns, the five turns coil can induce the highest magnetic flux density.