文档表示模型是文本自动处理的基础,是将非结构化的文本数据转化为结构化数据的有效手段。然而,目前通用的空间向量模型(Vector Space Model,VSM)是以单个的词汇为基础的文档表示模型,因其忽略了词间的关联关系,导致文本挖掘的准确率难以得到很大的提升。该文以词共现分析为基础,讨论了文档主题与词的二阶关系之间的潜在联系,进而定义了词共现度及与文档主题相关度的量化计算方法,利用关联规则算法抽取出文档集上的词共现组合,提出了基于词共现组合的文档向量主题表示模型(Co-occurrence Term based Vector SpaceModel,CTVSM),定义了基于CTVSM的文档相似度。实验表明,CTVSM能够准确反映文档之间的相关关系,比经典的文档向量空间模型(Vector Space Model,VSM)具有更强的主题区分能力。