A three-step damage identification method based on dynamic characteristics is proposed to improve the structure reliability and security and avoid serious accident. In the proposed method, the frequency and difference of modal curvature(DMC) are used as damage indexes. Firstly, the detection of the occurrence of damage is addressed by the frequency or the square of frequency change. Then the damage location inside the structure is measured by the DMC. Finally, with the stiffness reduction rate as a damage factor, the amount of damage is estimated by the optimization algorithm. The three-step damage identification method has been validated by conducting the simulation on a cantilever beam and the shaking table test on a submerged bridge. The results show that the method proposed in this paper can effectively solve the damage identification problem in theory and engineering practice.
The model test of seismic simulation shaking table is an important method to study the seismic design of bridge structure. In order to evaluate the seismic response and dynamic characteristics of pile-water-pier system for developing more reliable design procedures, shaking table model tests of a submerged bridge pier system, including pile groups-cap-pier and inertia mass, were conducted. Since different similitude laws corresponding to different test objectives affected the validity of test results, the similitude law with the aim to consider the effect of hydrodynamic pressure was proposed and confirmed through an actual example. Based on the test results, the effect of water around model on seismic response under seismic excitation input was analyzed and the failure level was judged by observing the variation of basic frequency. The test results indicate that the transfer function of analytical model with water is different from that without water, the natural frequency without water is always higher than that with water, and the first modal shapes are various. It is also concluded that the similitude law is suitable for practical application and the dynamic characteristics and seismic response of the structure system can be changed because of the existence of the surrounding water, which should be paid much attention in the further investigation.