We present the design and the experimental demonstration of an invisible cloak with irregular shape by using tensor transmission line(TL) metamaterials. The fabricated cloak consists of tensor TL unit cells exhibiting anisotropic effective material parameters, while the background medium consists of isotropic TL unit cells. The simulated and the measured field patterns around the cloak show a fairly good agreement, both demonstrate that the fabricated cloak can shield the cloaked interior area from electromagnetic fields without perturbing the external fields. The scattering of the cloaked perfect electric conductor(PEC) is minimized. Furthermore, the nonresonant property of the TL structure results in a relatively broad bandwidth of the realized cloak, which is clearly observed in our experiment.
基于U MC 0.25μm BCD工艺,在传统带隙基准结构的基础上,设计了一种具有低功耗、高精度的基准,同时利用N MOS管工作在亚阈值区域时漏电流和栅极电压的指数特性,对基准温度特性曲线进行二阶补偿。仿真结果表明,电源电压5V时,静态电流功耗为3.16μA;电源电压2.5 V^5.5 V,基准电压变化53μV;温度在-40℃~130℃内,电路的温度系数为0.86×10-6/℃;三种工艺角下,低频时电路电源抑制比都小于-95 d B。
In this paper a millimeter-wave (MMW) squint indirect holographic method is presented, which is suitable for imaging with a large field-of-view. The proposed system employs the squint operation mode to remove the background and twin- image interferences, which achieves a similar effect to off-axis holography but leaves out the large-aperture quasi-optical component. The translational scanning manner enables a large field of view and ensures the image uniformity, which is difficult to realize in off-axis holography. In addition, a corresponding imaging algorithm for the presented scheme is developed to reconstruct the image from the recorded hologram. Some imaging results on typical objects, obtained with electromagnetic simulation, demonstrate good performance of the imaging scheme and validate the effectiveness of the image reconstruction algorithm.
Plasma photonic crystals composed of periodic plasma and dielectric materials have attracted considerable attention because of their tunable photonic band gaps,but only their band structures or negative refractive index properties have been addressed in previous works.In this paper,through studying the transmission and reflection characteristics of two types of twodimensional plasma photonic crystals,it is found that plasma photonic crystals play an important role in absorbing waves,and they show broader band and higher amplitude absorption characteristics than bulk plasmas.Also,the absorption of plasma photonic crystals can be tuned via plasma parameters;varying the collision frequency can make the bandwidth and amplitude tunable,but cannot change the central frequency,whereas varying the plasma frequency would control both the location and the amplitude of the absorbers.These features of plasma photonic crystals have potential for terahertz tunable absorber applications.