It is theoretically shown that excitonic Doppler-Rabi oscillations can occur in an organic slab moving along the axis of a high-Q cavity. Due to the N enhancement of the vacuum Rabi frequency, this effect can be more eas ily observed than that in a moving two-level atom.
The quantum dynamics of an exciton dressed by acoustic pnonons in an optically driven quantum dotsemiconductor microcavity at finite temperatures is investigated theoretically by quantum optics methods. It is shown that the temperature dependence of the vacuum Rabi splitting is 2√2g×exp[ - ∑qλq(Nq+1/2)],where Nq=1/[exp(ωq/kBT)-1] is the phonon population, g is the single-photon Rabi frequency, and λq corresponds to exciton-phonon coupling.