The inception cavitating flows around a blunt body are studied based on flow visualizations and velocity field measureme- nts. The main purpose of the present work is to study the incipient cavity evolution and the interplay between the inception cavitation and the local turbulent flows. A high-speed video camera is used to visualize the cavitating flow structures, and the particle image velocimetry (PIV) technique is used to measure the velocity field, the vorticity, and the Reynolds stresses under non-cavitating and inception cavitating flow conditions. It is found that the appearance of visible cavities is preceded by the formation of a cluster of micro-bubbles not attached to the body surface and in a hairpin-shaped vortex structure. During its evolution, the cavity moves downstream with a lower speed. The effect of the incipient cavity is significant on the local vortical structures but slight on the time- averaged velocity distribution. The mean Reynolds stress distributions in the turbulent shear flow can be substantially altered by the incipient cavities. The presence of the incipient cavities can lead to the production of turbulent fluctuations.
We realize broadband acoustic focusing effect by employing two symmetric Airy beams generated from phased arrays,in which the units of the phased arrays consist of different numbers of cavity structures, each of which is composed of a square cavity and two inclined channels in air. The exotic phenomenon arises from the energy overlapping of the two symmetric Airy beams. Besides, we demonstrate the focusing performance with high self-healing property, and discuss the effects of structure parameters on focusing performance, and present the characteristics of the cavity structure with straight channels. Compared with other acoustic lenses, the proposed acoustic lens has advantages of broad bandwidth(about 1.4 kHz), high self-healing property of focusing performance, and free adjustment of focal length. Our finding should have great potential applications in ultrasound imaging and medical diagnosis.
The objective of this paper is to apply a new identifying method to investigating the gas-liquid two-phase flow behaviors in a bubble column with air injected into water. In the numerical simulations, the standard k-c turbulence model is employed to de- scribe the turbulence phenomenon occurring in the continuous fluid. The Finite-Time Lyapunov Exponent (FTLE) and Lagrangian Coherent Structures (LCS) are applied to analyze the vortex structures in multiphase flow. Reasonable agreements are obtained between the numerical and experimental data. The numerical results show that the evolution of gas-liquid in the column includes initial and periodical developing stages. During the initial stage, the bubble hose is forming and extending along the vertical direction with the vortex structures formed symmetrically. During the periodical developing stage, the bub- ble hose starts to oscillate periodically, and the vortexes move along the bubble hose to the bottom of column alternately. Compared to the Euler-system-based identification criterion of a vortex, the FTLE field presents the boundary of a vortex without any threshold defined and the LCS represents the divergence extent of infinite neighboring particles. During the initial stage, the interfaces between the forward and backward flows are highlighted by the LCS. As for the periodical developing stage, the LCS curls near the vortex centers, providing a method of analyzing a flow field from a dynamical system perspec- tive.
In this paper, the periodically unsteady pressure field and head-drop phenomenon caused by leading edge cavitation have been investigated numerically by computational fluid dynamics (CFD) in a single stage centrifugal pump. A CFD model for cavita- tion steady and unsteady simulation has been calculated using the κ-ω SST turbulence model combining with a multiphase ap- proach, based on a homogeneous model assumption. A truncated form of Rayleigh-Plesset equation is used as a source term for the inter-phase mass transfer. The CFD computational region includes the suction cone, impeller, side chambers and volute, as well as suction and pressure pipes. The results were compared with experimental data under non-cavitation and cavitation conditions and a good agreement was obtained for the global performance, the experimental data of the head and the efficiency are 34.04 m and 74.42% at BEP, respectively, the predicted head is 34.31 m and the predicted efficiency is 73.75%. The analy- sis of inner flow pattern shows that the vortex flow generation in the rear of cavity region is the main reason of the head-drop. Obvious increasing can be observed for the amplitude of the pressure fluctuation at the blade passing frequency with different cavitation situations, and subpeak can be found. Besides, the effects of unsteady flow in the side chambers cannot be neglected for accurately predicting the inner flow of the pump. These results imply that this numerical method is suitable for the cavitat- ing flow in the pump.
LI XiaoJunYUAN ShouQiPAN ZhongYongYUAN JianPingFU YanXia