The field of medical photonics is rapidly expanding, and a wide variety of optical technologies and instruments have recently been developed for diagnostic, therapeutic and basic science applications in medicine. This review presents the recent advances and application of medical photonics, and the obtained results from our laboratory are highlighted. Finally, the challenges and future prospects for the transition from technological exploration to clinical studies are discussed.
A finite element method computation model for analyzing optothermal interaction of polychromatic light and biology tissue is proposed and proven by experiment. A continuous xenon lamp is employed as an example. First, the spectral energy distribution of the xenon lamp is measured and found to be equivalent to a series of quasi-chromatic light with different central wavelengths, different energies, and certain bandwidth. Next, according to the reported thermal and optical parameters of porcine skin and porcine liver, the temporal temperature distributions of these tissues irradiated by each quasi-chromatic light are simulated. Then, the thermal effect is superimposed to obtain the whole optothermal temporal temperature distribution. Moreover, the optothermal response experiments of fresh porcine skin and porcine liver tissues irradiated by continuous xenon lamp are carried out. The results of the simulation and experiment are analyzed and compared, and are found to be commendably matched.