The problem of the stability analysis and controller design which the network-induced delays and data dropout problems network-induced delays are assumed to be time-varying and bounded, for Lurie networked control systems (NCSs) is investigated, in are simultaneously considered. By considering that the and analyzing the relationship between the delay and its upper bound, employing a Lyapunov-Krasovskii function and an integral inequality approach, an improved stability criterion for NCSs is proposed. Furthermore, the resulting condition is extended to design a less conservative state feedback controller by employing an improved cone complementary linearization (ICCL) algorithm. Numerical examples are provided to show the effectiveness of the method.