In order to improve the luminescence properties of CaTiO3:Pr3+, a series of CaTiO3:Pr3+, such as CaTi0.97Nb0.03O3:Pr3+, Ca0.8Zn0.2TiO3: Pr3+, Ca0.8Zn0.2Ti0.97Nb0.03O3:Pr3+ and B3+-doped Ca0.8Zn0.2Ti0.97Nb0.03O3: Pr3+ were prepared through conventional solid state reaction method. The results of the photoluminescence excitation and emission spectra showed that all the samples emitted red phosphorescence at 612 nm originating from 1D2 to 3H4 emission of Pr3+ under the 337 nm excitation. When examined by the X-ray diffraction (XRD), all the samples presented a predominant phase of CaTiO3 (JCPDS# 42-423) except Zn2+-doped samples which also revealed another phase of Zn2Ti3O8 (JCPDS# 73-579). The results of the afterglow decay curves showed that co-doping Zn2+ ions, Nb5+ ions or adding a small amount of B3+ into Ca0.8Zn0.2Ti0.97Nb0.03O3:Pr3+ were effective in improving the photoluminescence properties of CaTiO3:Pr3+ phosphor. Thermoluminescence results showed that the trap existing in all the samples was the same as in CaTiO3:Pr3+ and doping singly Nb5+ or Zn2+ hardly changed the trap depth but co-doping Nb5+ and Zn2+ could modify the trapping level from 0.63 to 1.26 eV distinctively. In addition, adding a certain amount of B3+ into CTO-PZN could also deepen the trap depth.