Bottom ash. a power plant waste, was used to adsorb acid orange 7. The adsorption of acid orange 7 in aqueous solutions onto bottom ash was studied as functions of particle size. dosage, initial concentration and agitation time by batch experiments. Under conditions of bottom ash dosage of 1.5 g/50 ml and 5 g/50 ml for 〈0.074 mm and 0.074 mm-0.2 mm of bottom ash, respectively, it could achieve 99.1% and 87.6% dye removal efficiency. The adsorption isotherms for the bottom ash could be well described by both Freundlich and Langmuir isotherms. The calculated dye adsorption capacities of bottom ash for the particle size of 0.074 mm -0.2 mm and 〈0.074 mm were 2.78 mg/g and 10.21 mg/g, respectively. The results indicated that the dye uptake process fitted to the pseudo-first-order kinetic model better than the pseudo-second-order. The data were also fitted to intraparticle diffusion model by two adsorption stages, due to the difference in rate of mass transfer in the initial and final stages of adsorption. Significant variations were observed in the FTIR spectra and Stem photographs of bottom ash after adsorption. The column parameters were calculated by breakthrough curves at different flow rates and bed depths.
QU Yan-zhi SUN Wei-ling YE Zheng-fang YU Qing NI Jin-ren
Water soluble organic carbon (WSOC) in sediments plays an important role in transference and transformation of aquatic pollutants. This article investigated the inherent mechanisms of how sediemnt grain size affect the partitioning coeffcient (k) of WSOC. Influences of NaOH extracted humic substances were particularly focused on. Sediments were sampled from two cross-sections of the middle Yellow River and sieved into three size fractions (〈 63 μm, 63-100 μm, and 100-300 μm). The total concentration of WSOC in sediments (Cwsoc) and k were estimated using multiple water-sediment ratio experiments. Results showed that Cwsoc ranged from 0.012 to 0.022 mg/g, while k ranged from 0.8 to 3.9 L/kg. Correlations between the spectrum characteristics of NaOH extracted humic substances and k were analyzed. Strong positive correlations are determined between k and the aromaticity indicators of NaOH extracted humic substances in different sediment size fractions. Comparing with finer fractions (〈 63 μm), k is higher in larger size fractions (63- 100 μm and 100-300 μm) related to higher aromaticity degree of NaOH extracted humic substances mostly. While negative relationship between k and the area ratio of fourier transform infrared spectroscopy (FT-IR) at 3400 and 1430 cm^-1 implied that the lowest k was related to the highest concentration of acidic humic groups in particles 〈 63 μm. WSOC in finer fractions (〈 63 μm) is likely to enter into pore water, which may further accelerate the transportation of aquatic contaminants from sediment to water.