An optical fiber evanescent wave methane gas sensor based on core diameter mismatch is reported.The sensor consists of a multimode fiber in which a short section of standard single-mode fiber,coated with the inclusion of cryptophane molecules E in a transparent polysiloxane film,is inserted.The sensing principle is analyzed by optical waveguide theory.For different sensing film thicknesses and interaction lengths,the sensor signal is investigated within the methane concentration range of 0-14.5%(v/v).It is shown that the sensor signal with the thickness of 5μm and the interaction length of 3 mm strengthens linearly with the increasing concentration of methane,with a slope of 0.0186.The best detection limit of the sensor for methane is 2.2%(v/v) with a response time of 90 s.This sensor is suitable for the detection of methane concentration below the critical value of 5%.
A novel long-period fiber grating (LPFG) film methane sensor is designed and applied successfully. The sensor is constructed by depositing a thin styrene-acrylonitrile (SAN) film containing the new compound cryptophane-E-(OEt)6 onto the cladding surface of the LPFG. This film is sensitive to methane gas. Methane causes a change in the refractive index of the sensing film, which can be measured by shifting the resonance wavelength. Experimental results show that the resonant wavelength shifts to the longer wavelength, with increasing methane concentration at a range of 0.0%–3.5% (v/v). A linear relationship is obtained within the test range. Detection limit is estimated at 0.2%, and response time is 60 s. No significant interference is detected from dry air, O2 , CO, CO2 , and H2 . This novel methane sensing material has great application potential due to its advantages.