We study via numerical experiments the localisation property of an acoustic wave in a viscoelastic soft medium containing randomly-distributed air bubbles. The behaviours of the oscillation phases of bubbles are particularly investigated in various cases for distinguishing efficiently the acoustic localisation from the effects of acoustic absorption caused by the viscosity of medium. The numerical results reveal the phenomenon of 'phase transition' characterized by an unusual collective oscillation of bubbles, which is an effective criterion to unambiguously identify the acoustic localisation in the presence of viscosity. Within the localisation region, the phenomenon of phase transition persists, and a remarkable decrease in the fluctuation of the oscillation phases of bubbles is observed. The localisation phenomenon will be impaired by the enhancement of the viscosity factors, and the extent to which the acoustic wave is localised may be determined by appropriately analyzing the values of the oscillation phases or the amount of reduction of the phase fluctuation. The results are particularly significant for the practical experiments in an attempt to observe the acoustic localisation in such a medium, which is in general subjected to the interference of the great ambiguity resulting from the effect of acoustic absorption.