The thermal boundary conductance of Al/SiO2, Al/Si, Au/SiO2, and Au/Si are measured by a femtosecond laser transient thermoreflectance technique. The distinct differences of the interfacial thermal conductance between these samples are observed. For the same metal film, the thermal boundary conductance between metal and substrate decreases with the thermal conductivity of the substrate. The measured results are explained with the phonon diffusion mismatch model by introducing a phonon transmission coefficient across the interface.
In order to improve the measurement precision and increase the reliability of the femtosecond laser transient thermoreflectance system, the relative optical path difference between pump and probe beams is prolonged, which can improve the fitting accuracy of the experimental data to the theoretical model. A modified experimental setup is devised with the pump path intercalated a moving stage identical to the one in the probe path, which extends the optical path difference of the probe beam relative to the pump beam from 4 to 8 ns. The measured results indicate that the uncertainty from the misalignment and divergence of both beams can be ignored when the last 4 ns experimental data are connected with those of the first 4 ns smoothly. The as-obtained thermal conductance of AI/Si and Cr/Si interfaces agrees well with the reported experimental values, which verifies the reliability of this modified version of this measurement.