AIM: To explore the pathogenicity and infectivity of hepatitis G virus (HGV) by observing replication and expression of the virus, as well as the serological and histological changes of Macaca mulatta infected with HGV genomic RNA or HGV RNA-positive serum.METHODS: Full-length HGV cDNA clone (HGVqz) was constructed and proved to be infectious, from which HGV genomic RNA was transcribed in vitro. Macaca mulatta BY1 was intra-hepatically inoculated with HGV genomic RNA, HGV RNA-positive serum from BY1 was intravenously inoculated into Macaca mulatta BM1, and then BB1 was infected with serum from BM1. Serum and liver tissue were taken regularly, and checked with RT-PCR, in situ hybridization and other immunological, serological,histological assays.RESULTS: Serum HGV RNA was detectable in all the 3Macaca mulattas, serological and histological examinations showed the experimental animals had slightly elevated alanine transaminase (ALT) and developed HGV viremia during the infectious period. The histology, immunohistochemistry, and in situ hybridization in liver tissues of the inoculated animals demonstrated a very mild hepatitis with HGV antigen expression in cytoplasm of hepatocytes.RT-PCR and quantitative PCR results showed that HGV could replicate in liver.CONCLUSION: The genomic RNA from full-length HGV cDNA is infectious to the Macaca mulatta and can cause mild hepatitis. HGV RNA-positive serum, from HGV RNA inoculated Macaca mulatta, is infectious to other Macaca mulattas. Macaca mulatta is susceptible to the inoculated HGV, and therefore can be used as an experimental animal model for the studies of HGV infection and pathogenesis.
Hepatitis C (HCV) genome is highly variable, particularly in the hypervariable region 1 (HVR1) of its E2 envelope gene. The variability of HCV genome has been a major obstacle for developing HCV vaccines. Due to B-cell HVR1 mimotopes mimicking the antigenicity of natural HVR1 epitopes; some T-cell epitopes from the consensus sequence of HCV genes conserving among the different HCV genotypes, we synthesized an minigene of HCV-derived multi-epitope peptide antigen (CMEP), which contains 9 B-cell HVR1 mimotopes in E2, 2 conserved CTL epitopes in C, 1 conserved CTL epitope in NS3; 1 conserved Th epitope in NS3. This minigene was cloned into a GST expression vector to generate a fusion protein GST-CMEP. The immunogenic properties of CEMP were characterized by HCV infected patients’ sera,; found that the reactivity frequency reached 75%. The cross reactivity of anti-CEMP antibody with different natural HVR1 variants was up to 90%. Meanwhile, we constructed an HCV DNA vaccine candidate, plasmid pVAX1.0-st-CMEP carrying the recombinant gene (st) of a secretion signal peptide; PADRE universal Th cell epitope sequence in front of the CMEP minigene. Immunization of rabbits with pVAX1.0-st-CMEP resulted in the production of antibody, which was of the same cross reactivity as the fusion protein GST-CMEP. Our findings indicate that the HCV-derived multi-epitope peptide antigen in some degree possessed the characteristics of neutralizing HCV epitopes,; would be of the value as a candidate for the development of HCV vaccines.
GAO Jun1,2,GONG Yuping1,ZHAO Ping1,ZHU Qing3,YANG Xiaoping1 & QI Zhongtian1 1.Department of Microbiology,Stake Key Laboratory of Medical Immunology,Second Military Medical University,Shanghai 200433,China