Materials design is the most important and fundamental work on the background of materials genome initiative for global competitiveness proposed by the National Science and Technology Council of America. As far as the methodologies of materials design, besides the thermodynamic and kinetic methods combing databases, both deductive approaches so-called the first principle methods and inductive approaches based on data mining methods are gaining great progress because of their suc- cessful applications in materials design. In this paper, support vector machine (SVM), including support vector classification (SVC) and support vector regression (SVR) based on the statistical learning theory (SLT) proposed by Vapnik, is introduced as a relatively new data mining method to meet the different tasks of materials design in our lab. The advantage of using SVM for materials design is discussed based on the applications in the formability of perovskite or BaNiO3 structure, the prediction of energy gaps of binary compounds, the prediction of sintered cold modulus of sialon-corundum castable, the optimization of electric resistances of VPTC semiconductors and the thickness control of In203 semiconductor film preparation. The results presented indicate that SVM is an effective modeling tool for the small sizes of sample sets with great potential applications in materials design.