Herein,we report the excellent De-NO_(x)performance of La0.7Sr0.3MnO3(LSM)perovskite-supported Pd catalysts(Pd-LSM)in alternating lean-burn/fuel-rich atmospheres using C3H6 as reductant and describe the in situ activation of the Pd catalysts via metal-support interaction(MSI)tuning.The NO_(x)reduction conversion of the Pd-LSM catalyst increased significantly from 56.1%to 90.1%and the production of N2O was suppressed.Our results demonstrated that this behavior was mainly attributed to the in situ transformation of Pd2+into Pd0 during the reaction.The generated Pd0 species could readily activate the C3H6 reductant and achieve an eight-fold higher turnover frequency than Pd2+for the reduction of NO_(x).Moreover,excessive MSIs inhibited the in situ generation of Pd0,and thereby,lowered the De-NO_(x)activity of the catalyst even at high Pd dispersion.In addition,the Pd-LSM catalysts exhibited much higher S tolerance than conventional Al_(2)O_(3)-supported catalysts.Our study provides a new approach for analyzing and designing highly active metal catalysts operated under dynamic alternating oxidizing/reducing atmospheric conditions.
Dongyue ZhaoYuexi YangZhongnan GaoMengxin YinYe TianJing ZhangZheng JiangXiaobo YuXingang Li
Small cluster and periodic surface models with low coverages of intermediates are frequently employed to investigate reaction mechanisms and identify active sites on nanoparticles(NPs)in density functional theory(DFT)studies.However,diverse active sites on NPs cannot be sufficiently represented by these simple models,hampering the in-depth insights into the catalytic behavior of NPs.This paper describes the crucial roles of both model and coverage effect on understanding the nature of active sites for CO_(2)reduction over Au and Pd NPs using DFT calculations.Terrace sites exhibit higher selectivity for CO than edge sites on Au NPs,which is opposite to the results on Au periodic surfaces.This contradiction reveals the computational model effect on clarifying active site properties.For Pd catalysts,the coverage effect is more significant.On bare Pd NPs and periodic surfaces,the selectivity for CO at edge sites is nearly identical to that at terrace sites,whereas edge sites display higher selectivity for CO than terrace sites in the case of high CO coverages.Through considering the more realistic models and the coverage effect,we successfully describe the size effect of Au and Pd NPs on CO selectivity.More importantly,this work reminds us of the necessity of reasonable models in DFT calculations.