This paper presents a chaos-genetic algorithm (CGA) that combines chaos and genetic algorithms. It can be used to avoid trapping in local optima profiting from chaos'randomness,ergodicity and regularity. Its property of global asymptotical convergence has been proved with Markov chains in this paper. CGA was applied to the optimization of complex benchmark functions and artificial neural network's (ANN) training. In solving the complex benchmark functions,CGA needs less iterative number than GA and other chaotic optimization algorithms and always finds the optima of these functions. In training ANN,CGA uses less iterative number and shows strong generalization. It is proved that CGA is an efficient and convenient chaotic optimization algorithm.
This paper studies the fault diagnosis of singular stochastic systems. The probability distribution of output is measured by probability density functions (PDFs), which are modeled by a square root B-spline expansion. An adaptive nonlinear observer is proposed to estimate the size of the fault occurring in systems. ~rthermore, the linear matrix inequality (LMI) approach is applied to establish sufficient conditions for the existence of the observer. Finally, the simulation results are given to indicate the method for diagnosing the fault.
Nowadays, more and more field devices are connected to the central controller through a serial communication network such as fieldbus or industrial Ethernet. Some of these serial communication networks like controller area network (CAN) or industrial Ethernet will introduce random transfer delays into the networked control systems (NCS), which causes control performance degradation and even system instability. To address this problem, the adaptive predictive functional control algorithm is derived by applying the concept of predictive functional control to a discrete state space model with variable delay. The method of estimating the networkinduced delay is also proposed to facilitate the control algorithm implementing. Then, an NCS simulation research based on TrueTime simulator is carried out to validate the proposed control algorithm. The numerical simulations show that the proposed adaptive predictive functional control algorithm is effective for NCS with random delays.