Let N be a maximal and discrete nest on a separable Hilbert space H,E the projection from H onto the subspace[C]spanned by a particular separating vector for N′and Q the projection from K=H⊕H onto the closed subspace{(,):∈H}.Let L be the closed lattice in the strong operator topology generated by the projections(E 00 0),{(E 00 0):E∈N}and Q.We show that L is a Kadison-Singer lattice with trivial commutant,i.e.,L′=CI.Furthermore,we similarly construct some Kadison-Singer lattices in the matrix algebras M2n(C)and M2n.1(C).