Acute toxicity of 21 quinolone antibiotics was monitored using photobacterium Vibriofischeri assay. The minimum IC20 (inhibitory concentration for 20% luminescence elimination) was obtained at the least 18.86 μmol/L for the tested quinolones. A quantitative structure-activity relationship model was established to investigate the possible mechanism for the acute toxicity. The critical physicochemical descriptors, describing a and atom electronegativity, implied that the electron transfer might occur between the quinolones and photobacterium V. fischeri. Although the quinolones exhibited limited acute toxicity to photobacterium, toxicity elevation was detected after their chlorination. Hence, chlorination disinfection treatment of quinolone-containing water should be of concerns.
The brominated products, formed in chlorination treatment of benzophenone-4 in the presence of bromide ions, were identified, and the formation pathways were proposed.Under disinfection conditions, benzophenone-4 would undertake electrophilic substitution generating mono- or di-halogenated products, which would be oxidized to esters and further hydrolyzed to phenol derivatives. The generated catechol intermediate would be transformed into furan-like heterocyclic product. The product species were p H-dependent,while benzophenone-4 elimination was chlorine dose-dependent. When the chlorination treatment was performed on ambient water spiked with benzophenone-4 and bromide ions, most of brominated byproducts could be detected, and the acute toxicity significantly increased as well.
Ming XiaoDongbin WeiLiping LiQi LiuHuimin ZhaoYuguo Du
Benzophenones (BPs) are a class of widely used UV filters, which have been frequently detected within multiple environmental matrices. Disinfection is a necessary process in water treatment processes. The transformation behaviors and toxicity changes of 14 BP-type UV filters during chlorination disinfection treatment were investigated in this study. A new index, the acute toxicity formation potential, was proposed to evaluate the toxicity changes and potential risks of BP-type UV filters during chlorination treatment. It was found that 13 of 14 BP-type UV filters exhibited toxicity decreases in the chlorination disinfection process, more or less, while one showed a toxicity increase. The toxicity changes were dependent on substitution effects, such that 2,4-di-hydroxylated or 3-hydroxylated BPs exhibited significant toxicity decreases after chlorination treatment due to the ready cleavage of the aromatic ring. Importantly, the acute toxicity changes could be duplicated in an ambient water matrix.