On the basis of the microscopic phase-field dynamic model and the microelasticity theory, the characteristics of the coarsening behavior of γ' phase in Ni-Al alloys have been systematically studied in a certain volume fraction of the precipitates. It was found that the initial irregular shape, randomly distributed γ' phase, gradually transformed into cuboidal shape, regularly aligned along the [100] and [010] directions, and a highly preferential selected microstructure was formed during the later stage of precipitation. The volume fraction of the precipitates produced some effects on the precipitate morphology but did not produce an obvious effect on the regularities of precipitate distribution. The coarsening rate constant from the cubic growth law decreased as a function of volume fraction for small volume fractions, remained constant for intermediate volume fractions, and increased as a function of volume fraction for large volume fractions. During the coherent coarsening process, four "splitting" patterns between γ' phases, which belonged to different antiphase domains, were produced via particle aggregation, such as an L-shaped pattern, a doublet, a triplet, and a quartet.
The process of γ(fcc)→γ(fcc)+γ'(L12)phase transformation was simulated by using microscopic phase-field method for the low supersaturation NiAl9Fe6 alloy.It is found that in the γ' phase,the ordering degree of Al atoms is obviously higher than that of Fe atoms,and the ordering of Al atoms precedes their clustering,while the case of Fe atoms is opposite.The α site is mainly occupied by Ni atoms,while the β site is occupied in common by Al,Fe and Ni atoms.At order-disorder interphase boundary,the ordering degree of Al atoms is higher than that of Fe atoms,and at the β site,the Fe atomic site occupation probabilities vary from high to low during ordering;the Al atomic site occupation probabilities are similar to those of Fe atoms,but their values are much higher than those of Fe atoms;Ni atoms are opposite to both of them.Meanwhile,during the ordering transformation,γ' phase is always a complex Ni3(AlFeNi)single-phase,and it is precipitated by the non-classical nucleation and growth style.Finally,in the alloy system,the volume of γ' ordered phase is less than that of γ phase,and the volume ratio of order to disorder is about 77%.
Based on Thomas-Fermi model, the interior potential boundary condition with the effect of electric field was defined, the calculation method of free energy for atom cluster under electric field was established. The change of free energy of Al-Cu-Li alloy under the effect of electric field was calculated quantitatively. It is shown that: near the zero electric field and the side of positive electric field, the free energy of Cu4LiAl7 compound at aging temperature 460 K is higher than that of free energy at solid solution temperature 725 K, but once the negative electric field increases to certain degree there will be opposite result. Under the effect of electric field, at 725 K the free energy of Cu4LiAl7 is higher than that of Al-1.0%Li-4.0%Cu, and at 460 K the free energy of compound is lower than that of solid solution. When the copper content in the Al-Li-Cu solid solution is below 5%, under the effect of electric field the free energy of solid solution increases gradually with the increasing of copper content, but the increasing amplitude reduces with the increasing of copper content. The free energy of binary solid solution increases with the addition of lithium, and with the increasing of electric field intensity the free energy margin of two kinds of solid solution becomes bigger.
Ordered domain interfaces formed between DO22 (Ni3V) phases along [100] direction during the precipitation process of Ni75AlxV25-x alloys were simulated by using the microscopic phase-field model. The atomic structure, migration process, and compositions of interfaces were investigated. It is found that there are four kinds of stable ordered domain interfaces formed between DO22 phases along [100] direction and all of them can migrate. During the migration of interfaces, the jump of atoms shows site selectivity behaviors and each stable interface forms a distinctive transition interface. The atom jump selects the optimist way to induce the migration of interface, and the atomic structures of interfaces retain the same before and after the migration. The alloy elements have different preferences of segregation or depletion at different interfaces. At all the four kinds of interfaces, Ni and Al segregate but V depletes. The degrees of segregation and depletion are also different at different interfaces.
The effects of temperature on atomic anti-site behaviors in L12-Ni3(AlFe) phases were studied using microscopic phase-field dynamic model in precipitation progress of Ni75Al20Fe5 alloy.The results show that with the increase of temperature,the formation of NiAl and AlNi anti-sites is much easier in Ni3(AlFe),and Ni and Al anti-site atoms show clearly stronger temperature-dependent than Fe anti-site atoms.The evolution progress of anti-site atoms is completed at the initial growth stage of L12-Ni3(AlFe) phases.The site occupation probabilities of Ni atoms on the sublattice A(NiNi,face centers sites of FCC),and Al and Fe atoms on the sublattice B(AlAl and FeAl,corners sites of FCC) all present the degressive tendency with the temperature increasing.Fe atoms mainly prefer to occupy the Al sublattice at the whole temperature range.