We propose a novel scheme for synchronous optical sampling based on multicast parametric process. The linearly chirped and time-broadened pulses are utilized to replace the traditional mode-locked sampling pulses. An optical sampling rate of 80 Gbit/s is realized by using only one sampling source with repetition rate of 10 GHz.
Frequency-tunable microwave signal generation is proposed and experimentally demonstrated with a dual-wavelength single-longitudinal-mode (SLM) erbium-doped fiber ring laser based on a digital Opto-DMD processor and four-wave mixing (FWM) in a high-nonlinear photonic crystal fiber (PCF). The high-nonlinear PCF is employed for the generation of the FWM to obtain stable and uniform dual-wavelength oscillation. Two different short passive sub-ring cavities in the main ring cavity serve as mode filters to make SLM lasing. The two lasing wavelengths are electronically selected by loading different gratings on the Opto-DMD processor controlled with a computer. The wavelength spacing can be smartly adjusted from 0.165 nm to 1.08 nm within a tuning accuracy of 0.055 nm. Two microwave signals at 17.23 GHz and 27.47 GHz are achieved. The stability of the microwave signal is discussed. The system has the ability to generate a 137.36-GHz photonic millimeter signal at room temperature.
A new receiver is proposed, which uses the fiber optical parametric amplifier(FOPA) in optical code division multiple access(OCDMA) over free space optic(FSO) communication system. The noise tolerance as the performance index in this receiver is derived. The receiver can not only improve the noise tolerance but also change the pump data conveniently for adapting to the length variation of the coding sequence under a complex and fast-changing weather condition. The influence of different factors on the noise tolerance is analyzed, and a significant improvement of about 18.77 d B for the noise tolerance can be achieved when the pump power and the length of coding sequence are 5 W and 256, respectively.
A stable three-channel dual-wavelength fiber ring laser is proposed and experimentally demonstrated. The dig- ital mieromirror-deviee (DMD) processor can select and reeirculate any dual waveband from the gain spectrum of the erbium-doped fiber at each channel. The uniform and stable dual-wavelength oscillation is obtained by a highly nonlinear photonic crystal fiber, which causes two degenerate the four-wave-mixing processes. By loading different reproducibility diffraction gratings on the optoelectronic DMD processor, the laser can be operated stably in a three-channel dual-wavelength scheme at room temperature. The power fluctuation of each laser channel is less than -0.02 dB.
We propose a novel lumped time-delay compensation scheme for all-optical analog-to-digital conversion based on soliton self-frequency shift and optical interconnection techniques. A linearly chirped fiber Bragg grating is optimally designed and used to compensate for the entire time-delays of the quantized pulses precisely. Simulation results show that the compensated coding pulses are well synchronized with a time difference less than 3.3 ps, which can support a maximum sampling rate of 151.52 GSa/s. The proposed scheme can efficiently reduce the structure complexity and cost of all-optical analog-to-digital conversion compared to the previous schemes with multiple optical time-delay lines.
In this paper, we propose an optical quantization scheme for all-optical analog-to-digital conversion that facilitates photonics integration. A segment of 10-m photonic crystal fiber with a high nonlinear coefficient of 62.8 W-1/kin is utilized to realize large scale soliton self-frequency shift relevant to the power of the sampled optical signal. Furthermore, a 100-m dispersion-increasing fiber is used as the spectral compression module for further resolution enhancement. Simulation results show that 317-nm maximum wavelength shift is realized with 1550-nm initial wavelength and 6-bit quantization resolution is obtained with a subsequent spectral compression process.
A quasi-cyclic low-density parity check (QC-LDPC) code is constructed by an improved stability of the shortest cycle algorithm for 160-Gb/s non-return zero differential quadrature phase shift keying (NRZ- DQPSK) optical transmission system with the fiber-based optical parametric amplifier (FOPA). The QC- --14 d LDPC code with stability of the shortest cycle reduces the bit error ratio (BER) to 10 an restrains the error floor effectively.