Thermodynamic analyses and kinetic studies were performed on zinc oxide ore treatment by (NH4)2SO4 roasting technology. The results show that it is theoretically feasible to realize a roasting reaction between the zinc oxide ore and (NH4)2SO4 in a temperature range of 573-723 K. The effects of reaction temperature and particle size on the extraction rate of zinc were also examined. It is found that a surface chemical reaction is the rate-controlling step in roasting kinetics. The calculated activation energy of this process is about 45.57 kJ/mol, and the kinetic model can be expressed as follows: 1 - (1 - α)1/3 = 30.85 exp(-45.57/RT)·t. An extraction ratio of zinc as high as 92% could be achieved under the optimum conditions.
To obtain the appropriate conditions for eliminating Fe3+from NiSO4 solution, the digestion solution of the clinker was used as raw material, which was obtained from roasting the nickel oxide ore with (NH4)2SO4. The ammonium jarosite was successfully synthesized from the solution with analytic grade NH4HCO3. The effects of reaction temperature, reaction time, end pH value of reaction on the removal rate of iron were investigated, and the effect of the initial concentration of Fe3+was also discussed. All of those factors had significant effects on the removal rate of Fe3+, among which the reaction temperature was the most prominent. The appropriate reaction conditions were concluded as follows: reaction temperature 95 ℃ reaction time 3.5 h, end pH value of reaction 2.5 at initial concentration of Fe3+19.36 g/L. The physical aspect of (NH4)2Fe6(SO4)4(OH)12 was cluster figure composed of sheet or prismatic particles with smooth surface.
A novel process was developed for the preparation of ultrafine silica from potash feldspar. In the first step, potash feldspar was roasted with Na_2CO_3 and was followed by leaching using Na OH solution to increase the levels of potassium, sodium, and aluminum in the solid residue. The leaching solution was then carbonated to yield ultrafine silica. The optimized reaction conditions in the roasting process were as follows: an Na_2CO_3-to-potash feldspar molar ratio of 1.1, a reaction temperature of 875°C, and a reaction time of 1.5 h. Under these conditions, the extraction rate of SiO_2 was 98.13%. The optimized carbonation conditions included a final solution p H value of 9.0, a temperature of 40°C, a CO_2 flow rate of 6 m L/min, a stirring intensity of 600 r/min, and an ethanol-to-water volume ratio of 1:9. The precipitation rate and granularity of the SiO_2 particles were 99.63% and 200 nm, respectively. We confirmed the quality of the obtained ultrafine silica by comparing the recorded indexes with those specified in Chinese National Standard GB 25576―2010.