The paper presented accelerated ageing test results of a durability study on ortho-phthalic anhydride-type unsaturated polyester resin (191#) and its glass-fiber reinforcement polyester composites (GFRPC). The samples were exposed in an artificial xenon arc lamp ageing cell or a thermo-oxidative ageing cell. Morphology and gloss of the specimens were investigated by using a microscope and a gloss-meter, respectively. The tensile strength, bending strength and inter-laminar shear strength (ILSS) of GFRPC were tested before and after exposure, and were considered to evaluate the durability performance of this material. The polyester resin was analyzed by fourier transform infrared (FT-IR) spectroscopy. The results showed that the glossiness of the specimens got worse and some cracks appeared on their surface during the course of ageing, the tensile strength and bending strengths of the specimens first increased and then decreased. The ILSS of the composites decreased after they were aged in the xenon arc lamp cell, but increased while they were aged in the thermo-oxidative cell. The changes of these trends become more obvious during ageing in the xenon arc lamp cell, so the main influencing factor leading to the failure of this material is UV irradiation.
Antimony-doped tin hydroxide colloid precipitates have been synthesized by hydrolysis of SnCl4 and SbCl3 using: (1) an ion-exchange hydrolysis to remove chlorine ions, and (2) isoamyl acetate as an azeotropic solvent to obviate water. The obtained dried powder is of high dispersivity without any need for further grinding. The size and dispersivity of the final particles are investigated with the aid of TG-DTA, BET, XRD and TEM. After having calcined, the antimony-doped tin oxide nanopowder possesses a tetragonal rutile structure with high dispersivity, uniform particles and low hard agglomeration.