您的位置: 专家智库 > >

国家自然科学基金(10371059)

作品数:8 被引量:10H指数:2
相关作者:林路崔霞欧阳海波更多>>
相关机构:山东大学更多>>
发文基金:国家自然科学基金中国博士后科学基金山东省自然科学基金更多>>
相关领域:理学自然科学总论自动化与计算机技术更多>>

文献类型

  • 8篇中文期刊文章

领域

  • 6篇理学
  • 1篇自动化与计算...
  • 1篇自然科学总论

主题

  • 2篇WAVELE...
  • 2篇ROBUST...
  • 2篇UNBIAS...
  • 1篇信息服务
  • 1篇信息获取
  • 1篇数据分析
  • 1篇稳健性
  • 1篇广义线性模型
  • 1篇核估计
  • 1篇非参数
  • 1篇非参数回归
  • 1篇NONPAR...
  • 1篇PROCES...
  • 1篇PROCES...
  • 1篇ROBUST
  • 1篇STATIS...
  • 1篇WEAKLY
  • 1篇BOOTST...
  • 1篇CURVE
  • 1篇DEPEND...

机构

  • 3篇山东大学

作者

  • 2篇林路
  • 1篇欧阳海波
  • 1篇崔霞

传媒

  • 2篇Chines...
  • 1篇中国科学(A...
  • 1篇科技情报开发...
  • 1篇Acta M...
  • 1篇Acta M...
  • 1篇邵阳学院学报...
  • 1篇Scienc...

年份

  • 1篇2008
  • 1篇2007
  • 2篇2006
  • 2篇2005
  • 2篇2004
8 条 记 录,以下是 1-8
排序方式:
ITERATIVE QUASI-LIKELIHOOD FOR SEEMINGLY UNRELATED REGRESSION SYSTEMS
2005年
In the seemingly unrelated regression systems, the existing quasi-likelihood is always involved in the difficult problem of calculating inverse of a high order matrix specially for large systems. To avoid this problem, the new quasi-likelihood proposed in this paper is based mainly on a linearly iterative process of some unbiased estimating functions.Some finite sample properties and asymptotic behaviours for this new quasi-likelihood are investigated. These results show that the new quasi-likelihood for parameter of interest is E-sufficient, iteratively efficient and approximately efficient. Some examples are given to illustrate the theoretical results.
LINLUFANYUNZHENGDUJUNYUANYUAN
关键词:QUASI-LIKELIHOOD
广义线性模型中基于拟似然的变量选择方法被引量:1
2008年
变量选择是建立广义线性模型的基础.为了选择变量,本文提出了一种惩罚拟似然方法.这种方法不需要知道数据的分布,而只要求知道数据的一二阶矩.在统计推断过程中,此方法同时进行变量选择和参数估计,得到估计具有Oracle性质,并是渐近有效的.同时,本文定义了一种后验拟似然,于是,选择变量的过程就是一个比较拟后验密度的过程.特别的,对于线性模型,比较拟后验密度就等价于比较惩罚残差平方和。
林路
Robust Depth-Weighted Wavelet for Nonparametric Regression Models被引量:3
2005年
In the nonparametric regression models, the original regression estimators including kernel estimator, Fourier series estimator and wavelet estimator are always constructed by the weighted sum of data, and the weights depend only on the distance between the design points and estimation points. As a result these estimators are not robust to the perturbations in data. In order to avoid this problem, a new nonparametric regression model, called the depth-weighted regression model, is introduced and then the depth-weighted wavelet estimation is defined. The new estimation is robust to the perturbations in data, which attains very high breakdown value close to 1/2. On the other hand, some asymptotic behaviours such as asymptotic normality are obtained. Some simulations illustrate that the proposed wavelet estimator is more robust than the original wavelet estimator and, as a price to pay for the robustness, the new method is slightly less efficient than the original method.
Lu LIN
关键词:WAVELETROBUSTNESS
数据深度分析与信息获取
2004年
数据深度是一种新的数据分析技术,利用这种技术对数据进行分析和加工,从而获得有用和可信的信息,为决策提供可靠的依据。
欧阳海波谭林
关键词:数据分析信息服务
BOOTSTRAP WAVELET IN THE NONPARAMETRIC REGRESSION MODEL WITH WEAKLY DEPENDENT PROCESSES被引量:1
2004年
This paper introduces a method of bootstrap wavelet estimation in a non-parametric regression model with weakly dependent processes for both fixed and random designs. The asymptotic bounds for the bias and variance of the bootstrap wavelet estimators are given in the fixed design model. The conditional normality for a modified version of the bootstrap wavelet estimators is obtained in the fixed model. The consistency for the bootstrap wavelet estimator is also proved in the random design model. These results show that the bootstrap wavelet method is valid for the model with weakly dependent processes.
林路张润楚
关键词:BOOTSTRAPWAVELET
Stahel-Donoho kernel estimation for fixed design nonparametric regression models被引量:1
2006年
This paper reports a robust kernel estimation for fixed design nonparametric regression models.A Stahel-Donoho kernel estimation is introduced,in which the weight functions depend on both the depths of data and the distances between the design points and the estimation points.Based on a local approximation,a computational technique is given to approximate to the incomputable depths of the errors.As a result the new estimator is computationally efficient.The proposed estimator attains a high breakdown point and has perfect asymptotic behaviors such as the asymptotic normality and convergence in the mean squared error.Unlike the depth-weighted estimator for parametric regression models,this depth-weighted nonparametric estimator has a simple variance structure and then we can compare its efficiency with the original one.Some simulations show that the new method can smooth the regression estimation and achieve some desirable balances between robustness and efficiency.
LIN Lu CUI Xia
关键词:NONPARAMETRIC
非参数固定设计回归模型中的Stahel-Donoho核估计被引量:3
2006年
研究非参数固定设计回归模型中的稳健核估计.提出了一种Stahel- Donoho核估计,在此核估计中,权重函数既依赖于数据深度,又依赖于设计点和估计点之间的距离.对不可直接计算的误差深度,利用局部近似,给出了一种近似计算方法,使得新的估计是计算有效的.新的估计获得较高的崩溃点值,并有渐近正态和均方收敛等良好的大样本性质.与参数模型中的深度加权估计不同的是,这种深度加权非参数估计有简单的方差结构,于是,人们可以比较新旧估计的有效性.数据模拟结果表明,新的方法可以平滑回归估计,并获得稳健性和有效性的良好平衡.
林路崔霞
关键词:非参数回归核估计稳健性
Unbiased Quasi-regression被引量:1
2007年
Quasi-regression, motivated by the problems arising in the computer experiments, focuses mainly on speeding up evaluation. However, its theoretical properties are unexplored systemically. This paper shows that quasi-regression is unbiased, strong convergent and asymptotic normal for parameter estimations but it is biased for the fitting of curve. Furthermore, a new method called unbiased quasi-regression is proposed. In addition to retaining the above asymptotic behaviors of parameter estimations, unbiased quasi-regression is unbiased for the fitting of curve.
Guijun YANGLu LINRunchu ZHANG
关键词:UNBIASEDNESS
共1页<1>
聚类工具0