采用可见/近红外光谱对丙酯草醚胁迫下大麦叶片过氧化氢酶(catalase,CAT)与过氧化物酶(peroxidase,POD)含量预测进行研究。对500~900nm光谱采用移动平均法(moving average,MA)11点平滑方法进行预处理。采用蒙特卡罗-偏最小二乘法(monte carlo-partial least squares,MCPLS)方法分别对于CAT与POD的含量预测剔除7个与8个异常样本。基于全部光谱建立了CAT与POD含量预测的PLS,最小二乘支持向量机(least-squares support vector machine,LS-SVM)与极限学习机(extreme learning machine,ELM)模型,ELM模型对CAT含量预测效果最好,建模集相关系数(correlation coefficient of calibration,Rc)为0.916,预测集相关系数Rp为0.786;PLS模型对POD含量预测效果最佳,Rc为0.984,Rp为0.876。采用连续投影算法(successive projections algorithm,SPA)算法分别为CAT与POD预测选择了8个与19个特征波长,基于特征波长建立的PLS,LS-SVM与ELM模型中,ELM模型对CAT与POD含量预测效果均最佳,CAT含量预测的相关系数为Rc=0.928,Rp=0.790;POD含量预测的相关系数Rc=0.965,Rp=0.941。基于全谱与基于特征波长的回归分析模型预测效果相当,且对POD含量的预测效果优于对CAT含量的预测效果,而这需要进一步研究以得到精度和稳定性更高的预测模型。研究结果表明,采用可见/近红外光谱结合化学计量学方法可以实现对除草剂胁迫下大麦叶片CAT与POD含量的预测。
以油菜叶片为研究对象,利用高光谱成像技术,成功建立了叶绿素相对值SPAD值的预测模型。共采集了160个油菜叶片样本在380~1030nm范围内的高光谱图像。选择500~900nm之间的平均光谱作为油菜叶片样本的光谱。利用蒙特卡罗最小二乘法(monte carlo partial least squares,MC-PLS)剔除了13个异常样本,基于剩余的147个样本光谱数据与SPAD测量值进行分析,采用了不同的方法建立了多种预测模型,包括:全光谱的偏最小二乘法(partial least squares,PLS)模型,连续投影算法(successive projections algorithm,SPA)选择特征波长的PLS预测模型,"红边"位置(λred)的简单经验估测模型,三种植被指数R710/R760,(R750-R705)/(R750-R705)和R860/(R550*R708)分别建立的简单经验估测模型,以及基于这三种植被指数的PLS预测模型。建模结果显示,全光谱的PLS模型预测效果最为精确,其预测相关系数rp为0.833 9,预测均方根误差RMSEP为1.52。而使用SPA算法选出的8个特征波长所建立的PLS模型其预测结果可达到与全光谱的PLS模型非常接近的水平,而且在保证一定精度的条件下减少了大量运算,节省了运算时间,大幅提高了建模的速度。而基于红边位置和选择的三种植被指数而建立的简单经验估计模型其预测结果虽与基于全光谱的PLS预测模型有一定差距,但模型简单、运算量小,适合用于对精度要求不高的场合,对后续的便携仪器设备开发有一定的指导作用。