Two wheat cultivars (Triticum aestivum L.) were used to evaluate the effects ofpost-anthesis severe water deficit (SD) on starch content and granule size distribution and their relations with ethylene and spermidine (Spd). Comparison to the well-watered (WW) treatment, SD led to lower Spd and higher 1-aminocylopropane-l-carboxylic acid (ACC) concentrations and ethylene evolution rate (EER) in grains at the critical stage of forming starch granules. Application of Spd or aminoethoxyvinylglycine (AVG) significantly reduced ACC concentration and EER and increased Spd concentration, while ethephon or methylglyoxal-bis (MGBG) had an opposite impact. The volume and surface area distribution of starch granules showed a bimodal curve, while the number distribution exhibited a unimodal curve. SD caused a marked drop in grain weight, grain number and starch content, also led to a significant reduction in the proportion (both by volume and by surface area) of B-type starch granules (〈10 Ixm), with an increase in those of A-type starch granules (〉10 ~tm). Application of Spd or AVG increased the proportion (both by volume and by surface area) of B-type starch granules under SD. Correlation analysis suggested that ethylene and Spd showed an antagonism relation in the formation of B-type granules. These results suggested that it would be good for the formation of B-type starch granules to have the physiological traits of higher Spd and lower ACC concentrations and ethylene emission under SD.
YANG Wei-bingLI YongYIN Yan-pingJIANG Wen-wenPENG Dian-liangCUI Zheng-yongYANG Dong-qingWANG Zhen-lin
Granule size distribution of wheat starch is an important characteristic that can affect its chemical composit...
PENG Dian Liang WANG Zhen Lin~* CAI Tie YIN Yan Ping YANG Wei Bing NI Ying Li and YANG Dong Qing (National Key Laboratory of Crop Biology,Shandong Agricultural University,Taian 271018.P.R.China)
The quality or structure of a wheat population is significantly affected by the compositions of tillers. Little has been known about the physiological basis for the differences of productive capacity among tillers. Two winter wheat cultivars, Shannong 15(SN15) and Shannong 8355(SN8355), were used to investigate the differences of productive capacity among tillers and analyze the physiological mechanisms that determine the superior tiller group. Low-position tillers(early initiated tillers) had a higher yield per spike than high-position tillers(late initiated tillers) in both cultivars, which was due to their more grain number per spike, more fertile spikelet per spike, less sterile spikelet per spike and higher grain weight. According to cluster analysis, tillers of SN15 were classified into 2 groups: superior tiller group including main stem(0), the first primary tiller(I) and the second primary tiller(II); and inferior tiller group including the third primary tiller(III) and the first secondary tiller(I-p). Tillers of SN8355 were classified into 3 groups: superior tiller group(0 and I), intermediate tiller group(II and III) and inferior tiller group(I-p). In comparison with other tiller groups, the superior tiller group had higher photosynthetic rate of flag leaves, higher antioxidant enzyme(SOD, POD and CAT) activities and lower levels of lipid peroxidation in leaves, higher grain filling rate in both superior and inferior grains during grain filling, higher single-stem biological yield and larger single-stem economic coefficient. Correlation analysis showed that yield per spike was positively and significantly correlated with the flag leaf photosynthetic rate, grain filling rate, the antioxidant enzyme activities and soluble protein content(except for SN15 at 5 days post-anthesis(DPA)) of flag leaf, the single-stem biological yield, and the single-stem economic coefficient. Remarkable negative correlation was also found between yield per spike a