The establishment of an approach to design tunable yellow emission through singly doped single-phased phosphors to obtain white LED-based InGaN chip was reported. BaY2–xS4:xHo3+ phosphors were prepared by the high temperature solid state reaction and characterized by X-ray diffraction and photoluminescence spectra. Under the excitation of 465 nm,the emission spectra of these phosphors exhibited three sharp emission lines peaked at about 492,543 and 661 nm of Ho3+ corresponding to 5F3,5F4 (5S2) and 5F5→5I8 transitions,respectively,with comparable intensities,resulting in a yellow light emission. The luminescence mechanism for Ho3+ in BaY2S4 was explained.
The red, green and blue (R/G/B) tricolor emitting phosphors Ba2ZnSi2O7 co-doped with Ce3+and Eu3+were synthesized in air atmosphere by a conventional high temperature solid-state reaction technique. All of the excitation spectrum of the phosphor Ba2ZnSi2O7:Ce,Eu showed a strong broad band absorption in the n-UV region whenever monitored by red (630 nm)-emitting or by green (500 nm)-and blue (402 nm)-emitting. Under the excitation of 330 nm, the emission spectrum containing a blue-violet emis-sion band, a green emission and four sharp lines originated from the characteristic transitions of Ce3+, Eu2+and Eu3+ions, of which the relative intensities of the three emission bands could be controlled by the doping concentration of Ce3+. The ca. CIE chromaticity co-ordinates (x=0.317, y=0.309) of the phosphor Ba1.94ZnSi2O7:0.03Eu,0.01Ce was very close to the standard white (x=0.33, y=0.33), which suggested that it was a novel single-phased white-light emitting phosphor for LED-based near-UV chip. The mechanisms of energy transfer from Eu2+to Eu3+via Ce3+was also discussed.